# Electrochemical Study of Benzimidazole Complexes with Copper (II) Ions in Organic Solvents

E. J. Ukpong<sup>1\*</sup> and J. Prasad<sup>2</sup>

<sup>1</sup>Department of Science Laboratory Technology, Akwa Ibom State College of Agriculture, Obio Akpa, P.M.B 1001, Abak, Nigeria <sup>2</sup>Chemistry Department, Allahabad University, Allahabad, India

\*Corresponding author: jimmukpong@yahoo.com

**Abstract:** The electrochemical behaviours of copper (II) benzimidazole complex species have been studied in varying concentrations of benzimidazole using cyclic voltammetry. The cyclic voltammetric parameters were calculated. The complex species described involved two or more redox steps. The first step  $(Cu^{2+/+})$  involved a single electron, diffusion-controlled quasi-reversible electrode process (EC mechanism), while the second step(s) involved an irreversible reduction of the Cu(I) species to metallic copper.

**Keywords:** copper (II) complexes, benzimidazole, organosolvent, cyclic voltammogram, electroreduction, electrooxidation

# 1. INTRODUCTION

Benzimidazoles are classified as drugs<sup>1</sup> based on the possible substitutions at different positions on the benzimidazole nucleus. Benzimidazole is extensively used in industrial processes as a corrosion inhibitor for metal and alloy surfaces.<sup>2–5</sup> It is also known to play a fundamental role in many biological systems.<sup>2</sup> As interest in exploring benzimidazole derivatives and their metal complexes has continually increased, it has been recognised that these materials may serve as models that mimic both the structure and reactivity of metal ions in complex biological systems.<sup>6</sup>

Synthesis, thermal profiles,<sup>2</sup> spectral and magnetic<sup>7</sup> studies of copper (II) complexes of the general formula  $Cu(B_ZIm)X_2$  have been performed. Nickel (II) benzimidazole bromide complexes with the formula NiL<sub>4</sub>Br<sub>2</sub>(acetone)<sub>2</sub> have also been investigated<sup>8</sup> using thermoanalytical techniques coupled with a Fourier transform infrared (FT–IR) system supported by spectral techniques. The molecular structure of the dichlorobis(benzimidazole)Zn(II) complex was also investigated<sup>9</sup> by X-ray diffraction and infrared (IR) spectroscopy. The Zn atom was found to coordinate tetrahedrally with two Cl<sup>-</sup> anions and two benzimidazole ligands.

© Penerbit Universiti Sains Malaysia, 2011

A literature review revealed that electrochemical studies of complexes with benzimidazole or its derivatives have received little attention.<sup>10</sup> Cyclic voltammograms (CVs) of ruthenium and iron complexes with benzimidazole derivatives were described previously<sup>10</sup> and displayed a single wave couple, which was reversible over all pH ranges investigated. The relationship between the acid-base equilibria and electrochemistry was explored by focusing on their proton-couple electron transfer (PCET) reactions. Earlier, electroreduction of copper complexes with chelating ligands (benzimidazole, phenanthroline) in organic lithium containing an aqueous electrolyte was studied.<sup>11</sup> Electrochemical and spectral methods were used to test models for the energy transforming device, which contained electrode materials based on the complexes studied.

The aim of this study was to extend the cyclic voltammetric investigation of benzimidazole complexes from the first redox step to the second redox step. Copper was used as the metal ion in organic solvents and electrode mechanisms were proposed when necessary.

# 2. EXPERIMENTAL

The electrochemical parameters were obtained with a BAS Model CV-IB (Indiana, USA) cyclic voltammograph instrument having an electrochemical cell with a three-electrode system. The working electrode was a glassy carbon electrode (GCE). Platinum (Pt) wire was used as an auxiliary electrode, while a saturated calomel electrode (SCE) was used as a reference electrode with  $E^0 = 0.242$  V vs. NHE. The voltammograms were recorded on an X-Y recorder. Benzimidazole (B<sub>Z</sub>Im) and tetrabutylammoniumphosphate (TBAP) were obtained from Aldrich (USA). Dimethysulfoxide (DMSO) and acetonitrile (AN) were spectroscopy grade and were used as received. Ethyl alcohol was supplied by Calcutta Chemical Company, India. Copper chloride (CuCl.2H<sub>2</sub>0) was analytical reagent grade.

All cyclic voltammetric experiments were performed in an inert atmosphere. This was achieved by purging the cell solutions with nitrogen gas for approximately 20 minutes. The atmosphere was maintained over the cell solution during the recording of the voltammograms. The nitrogen gas was purified by bubbling through an alkaline vanadous sulfate solution and by passing it through a calcium sulfate drying tube before bubbling the gas through the cell solution(s).

The experiments were carried out at  $25^{\circ}C \pm 1^{\circ}C$  in 0.1 M tetrabutylammoniumphosphate-supporting electrolyte. Stock solutions of 0.01 M in 100 cm<sup>3</sup> of solvent were prepared for CuCl<sub>2</sub>.2H<sub>2</sub>0 and B<sub>z</sub>Im in dimethylsulfoxide, acetonitrile and ethyl alcohol. For a total working volume of

20 cm<sup>3</sup>, 2.0 cm<sup>3</sup> of CuCl<sub>2</sub>.2H<sub>2</sub>0 was placed in a clean dry beaker for each experiment. To make 0.002 M, 0.004 M and 0.006 M  $B_z$ Im solutions, 4.0 cm<sup>3</sup>, 8.0 cm<sup>3</sup> and 12.0 cm<sup>3</sup> were respectively mixed with the copper salt solution in the same beaker to obtain a total of 20 cm<sup>3</sup> of each of the non-aqueous solvents. The 0.01 M and 0.1 M  $B_z$ Im solutions were prepared by dissolving 0.236 g and 2.362 g, respectively, in a beaker containing 2.0 cm<sup>3</sup> CuCl<sub>2</sub>.2H<sub>2</sub>0 to obtain 20 cm<sup>3</sup> of each non-aqueous solvent. These were specified as 1:2, 1:4, 1:6, 1:10 and 1:100 copper:ligand molar ratios. All experiments were carried out with freshly prepared solutions.

### 3. **RESULTS AND DISCUSSION**

Table 1 shows the electrochemical results for the Cu(II)-B<sub>Z</sub>Im complexes with [Cu(II)]:[B<sub>Z</sub>Im] = 1:2, 1:4, 1:6, 1:10 and 1:100 molar ratios and 0.001 M CuCl<sub>2</sub>.2H<sub>2</sub>0 in DMSO. The CVs for the 1:2, 1:4, 1:6 and 1:10 ratios scanned in the potential range of +0.80 to -0.90 V vs. SCE were similar. They were characterised by a redox couple ( $c_1/a_1$ ) and an irreversible reduction  $c_2$  at  $\approx$  -0.67 V at 25 mV/s (Figure 1). The peak current for the second reduction (Ipc<sub>2</sub>) was, however, very small relative to that for first step (Ipc<sub>1</sub>). When scanning in the negative direction from +0.80 to -1.40 V, the 1:100 molar ratio showed a redox couple  $c_1/a_1$  corresponding to Cu<sup>2+/I+</sup> with E<sup>0°</sup> = +165 mV. A second irreversible reduction ( $c_2$ ) was attributed to the Cu<sup>+/o</sup> at -1.09 V followed by a stripping peak ( $a_2$ ) at -0.32 V in the reverse sweep (Figure 2). Analysis of Table 1 for the first couple indicated that the Cu(II)-B<sub>Z</sub>Im complexes underwent a diffusion controlled (1:2 and 1:4 ratios excepted) quasi-reversible single-electron transfer reduction.<sup>12</sup>

Figure 3 shows that CVs of a Cu(II)-B<sub>Z</sub>Im system in acetonitrile with 1:2 (A) and 1:4 (B) molar ratios scanned in the potential range of +0.80 to -0.20 V have features similar to SCE. Quasi-reversible reduction was displayed at +365 and +325 mV and had an irreversible reduction at  $\approx 20$  mV and  $\approx 150$  mV, respectively, at 25 mV/s. The peak current Ipc<sub>2</sub> was drastically reduced in the 1:4 molar ratio.

The CVs (Figure 4) scanned in the potential range of +0.80 to -0.90 V also showed similar features with one more reduction steps at a more negative potential. This involved two waves marked as c'<sub>3</sub> and c<sub>3</sub> at -0.64 (-0.67) and -0.73 (-0.79) V, respectively. They were assigned to a Cu<sup>+/0</sup> change in the 1:2 (1:4) molar ratio at 25 mV/S with a stripping peak at  $\approx -0.27$  (0.25) V.

| Rate |                      |                          | F                    | irst Step            |                     |        |                                | Secor          | nd Step                              |
|------|----------------------|--------------------------|----------------------|----------------------|---------------------|--------|--------------------------------|----------------|--------------------------------------|
| -    | Epc <sub>l</sub> /mV | Epa <sub>l</sub> /m<br>V | Ipc <sub>I</sub> /µA | Ipa <sub>I</sub> /µA | E <sup>0</sup> ,/mV | ∆Ep/mV | <u>Ipa</u><br>Ipc <sub>I</sub> | $Epc_2(Ipc_2)$ | Epa <sub>2</sub> (Ipa <sub>2</sub> ) |
|      | L=0.002M             |                          |                      |                      |                     |        |                                |                |                                      |
| 10   | +265                 | +365                     | 3.0                  | 2.0                  | +315                | 100    | 0.66                           |                |                                      |
| 25   | +260                 | +365                     | 4.0                  | 3.0                  | +313                | 105    | 0.75                           | (W/N)029-      |                                      |
| 50   | +250                 | +375                     | 6.0                  | 4.5                  | +313                | 125    | 0.75                           | (W/N)069-      |                                      |
| 00   | +230                 | +390                     | 7.0                  | 6.0                  | +310                | 160    | 0.85                           | (W/N)00L-      |                                      |
| 50   | +225                 | +400                     | 8.0                  | 7.0                  | +313                | 175    | 0.87                           |                |                                      |
| 00   | +220                 | +405                     | 9.0                  | 8.0                  | +313                | 185    | 0.88                           |                |                                      |
| 50   | +215                 | +410                     | 10.0                 | 9.0                  | +313                | 195    | 06.0                           |                |                                      |
|      | L=0.004M             |                          |                      |                      |                     |        |                                |                |                                      |
| 10   | +260                 | +350                     | 2.5                  | 2.0                  | +305                | 90     | 0.80                           |                |                                      |
| 25   | +240                 | +360                     | 3.5                  | 3.0                  | +300                | 120    | 0.80                           | -670(N/M)      |                                      |
| 50   | +225                 | +365                     | 5.0                  | 4.0                  | +295                | 125    | 0.80                           | (W/N)069-      |                                      |
| 00   | +220                 | +380                     | 7.0                  | 5.0                  | +300                | 160    | 0.71                           | (W/N)00L-      |                                      |
| 50   | +210                 | +390                     | 8.0                  | 6.0                  | +300                | 180    | 0.75                           |                |                                      |
| 00   | +200                 | +395                     | 9.2                  | 7.0                  | +298                | 195    | 0.76                           |                |                                      |
| 50   | +200                 | +400                     | 10.0                 | 8.0                  | +300                | 200    | 0.80                           |                |                                      |
| 00   | +195                 | +405                     | 11.2                 | 8.5                  | +300                | 210    | 0.75                           |                |                                      |
|      | L = 0.006M           |                          |                      |                      |                     |        |                                |                |                                      |
| 10   | +245                 | +335                     | 2.0                  | 2.0                  | +290                | 06     | 1.0                            |                |                                      |
| 25   | +230                 | +335                     | 3.0                  | 2.5                  | +283                | 105    | 0.83                           | (W/N)029-      |                                      |
| 50   | +225                 | +345                     | 4.5                  | 4.0                  | +285                | 120    | 0.88                           | (W/N)069-      |                                      |
| 00   | +215                 | +355                     | 6.0                  | 5.0                  | +285                | 140    | 0.83                           | (W/N)00L-      |                                      |
| 50   | +205                 | +365                     | 7.5                  | 6.0                  | +285                | 160    | 0.80                           |                |                                      |
| 000  | +195                 | +370                     | 8.0                  | 7.0                  | +283                | 175    | 0.87                           |                |                                      |
| 50   | +190                 | +380                     | 9.0                  | 7.5                  | +285                | 190    | 0.83                           |                |                                      |
| 00   | +185                 | +385                     | 10.0                 | 8 2                  | +285                | 200    | 0.87                           |                |                                      |

| Scan Rate         |                      |                          | Ч                    | irst Step            |                     |        |                                | Secol                                | nd Step                              |
|-------------------|----------------------|--------------------------|----------------------|----------------------|---------------------|--------|--------------------------------|--------------------------------------|--------------------------------------|
| mVs <sup>-1</sup> | Epc <sub>l</sub> /mV | Epa <sub>l</sub> /m<br>V | Ipc <sub>I</sub> /µA | Ipa <sub>I</sub> /µA | E <sup>0</sup> ,/mV | ΔEp/mV | <u>Ipa</u><br>Ipc <sub>I</sub> | Epc <sub>2</sub> (Ipc <sub>2</sub> ) | Epa <sub>2</sub> (Ipa <sub>2</sub> ) |
|                   | L = 0.01M            |                          |                      |                      |                     |        |                                |                                      |                                      |
| 10                | +235                 | +325                     | 2.0                  | 2.0                  | +280                | 90     | 1.0                            |                                      |                                      |
| 25                | +225                 | +335                     | 3.0                  | 2.5                  | +280                | 110    | 0.83                           |                                      |                                      |
| 50                | +220                 | +340                     | 4.5                  | 3.5                  | +280                | 120    | 0.77                           | -675(N/M)                            |                                      |
| 100               | +205                 | +345                     | 6.0                  | 5.0                  | +275                | 140    | 0.83                           | (W/N)069-                            |                                      |
| 150               | +200                 | +350                     | 7.0                  | 6.0                  | +275                | 150    | 0.85                           |                                      |                                      |
| 200               | +195                 | +355                     | 8.2                  | 7.0                  | +275                | 160    | 0.85                           |                                      |                                      |
| 250               | +190                 | +360                     | 9.2                  | 8.0                  | +275                | 170    | 0.86                           |                                      |                                      |
| 300               | +175                 | +365                     | 10.0                 | 8.5                  | +270                | 190    | 0.85                           |                                      |                                      |
|                   | L=0.1M               |                          |                      |                      |                     |        |                                |                                      |                                      |
| 10                | +120                 | +210                     | 1.5                  | 1.5                  | +165                | 90     | 1.0                            |                                      |                                      |
| 25                | +120                 | +210                     | 2.5                  | 2.0                  | +165                | 90     | 0.80                           | -1090(2.0)                           | -320(10.5)                           |
| 50                | +115                 | +225                     | 3.0                  | 3.0                  | +170                | 110    | 1.0                            | -120(11.0)                           | -310(3.0)                            |
| 100               | +100                 | +230                     | 4.5                  | 4.0                  | +165                | 130    | 0.88                           |                                      |                                      |
| 150               | +100                 | +230                     | 5.0                  | 4.5                  | +165                | 130    | 0.00                           |                                      |                                      |
| 200               | +95                  | +235                     | 6.0                  | 5.0                  | +165                | 140    | 0.83                           |                                      |                                      |
| 250               | +85                  | +240                     | 7.0                  | 5.5                  | +163                | 155    | 0.78                           |                                      |                                      |
| 300               | +80                  | +245                     | 7.2                  | 6.0                  | +163                | 165    | 0.83                           |                                      |                                      |

111



Figure 1: CVs of 1:2 (A) and 1:4 (B) Cu(II)-B<sub>Z</sub>Im system at  $\upsilon = 25$  mV/s, 0.001 M CuCl<sub>2</sub> in DMSO/0.1 M TBAP.



 $\longleftarrow E(V \text{ vs SCE}) \longrightarrow$ 

Figure 2: CV of 1:100 Cu(II)-B<sub>Z</sub>Im system at  $\upsilon = 25$  mV/s, 0.001 M CuCl<sub>2</sub> in DMSO/0.1 M TBAP.



Figure 3: CVs of 1:2 (A) and 1:4 (B), Cu(II)-B\_ZIm system at  $\upsilon=25$  mV/s, 0.001 M CuCl\_2 in AN/0.1 M TBAP.



Figure 4: CV of 1:2 Cu(II)-B<sub>z</sub>Im system at  $\upsilon$  = 25 mV/s, 0.001 M CuCl\_2 in AN/0.1 M TBAP.



Figure 5: CV of (A) 1:10, (B) 1:100 Cu(II)- $B_Z$ Im system at  $\upsilon = 25$  mV/s, 0.001 M CuCl<sub>2</sub> in AN/0.1 M TBAP.

Figure 5A displays the CV of the 1:10 Cu(II)-B<sub>Z</sub>Im system in the potential range of +0.80 to -0.80 V at v = 25 mV/s; a quasi-reversible couple (c<sub>I</sub>/a<sub>I</sub>) and an irreversible reduction (c<sub>2</sub>) at  $\cong$  -0.69 V is shown. Interestingly, the second anodic peak (a<sub>2</sub>) at -0.37 V did not appear as a stripping peak and its potential was shifted cathodically relative to lower Cu(II)-B<sub>Z</sub>Im molar ratios. Further, CV features observed for the 1:100 Cu(II)-B<sub>Z</sub>Im system with respect to second reduction step differed greatly. The second step consisted of three overlapping waves displayed as c'<sub>2</sub>, c''<sub>2</sub> and c<sub>2</sub> at about -0.63, 0.73 and -0.815 V. However, the anodic peak, a<sub>2</sub>, disappeared completely (Figure 5B). Analysis of Table 2 indicated that the Cu(II)-B<sub>Z</sub>Im complexed with [Cu(II)]: [B<sub>Z</sub>Im] (1:2 to 1:100 molar ratios) underwent a diffusion-controlled<sup>12</sup> quasi-reversible single-electron redox reaction Cu<sup>2+/+</sup> and an irreversible Cu<sup>+/o</sup> reduction (c<sub>2</sub>) at a more negative potential in acetonitrile.

The suggested redox process<sup>14, 15</sup> for copper (II) complexes at low molar ratios of 1:2 and 1:4 may be represented as follows:



The CV features were similar for the 1:2 Cu(II)-B<sub>Z</sub>Im system in ethyl alcohol (Figure 6A) with those in AN (Figure 3). A quasi-reversible<sup>12</sup> couple  $(c_I/a_I)$  corresponding to the Cu<sup>2+/+</sup> reduction step at +350 mV and an irreversible reduction peak  $(c_2)$  at +190 mV were observed in alcohol in the potential range +0.70 to -0.20 in contrast to SCE. However, when extending the potential region to -1.10V, a second reduction step composed of two overlapping waves  $(c'_3 \text{ and } c_3)$  at  $\cong$  -0.773 and -0.96 V at 50 mV/s (Figure 6B) were observed. Interestingly, the second anodic peak  $(a_2)$  did not appear in the reverse scan, which differed more than in AN (Figure 4). The peak current ratio (Ipa<sub>I</sub>/Ipc<sub>I</sub>) was greater than unity for the 1:2 and 1:4 Cu(II): B<sub>Z</sub>/Im system, suggesting that the copper (II) species was weakly absorbed at the surface of the working electrode. It should be noted that the reduction peak,  $c_2$ , appeared at  $v \ge 50$  mV/s while the reduction peak,  $c_3$ , was centred at  $\cong$  -0.68 V (Table 3). It appears that the concentration of the second reducible species was appreciably low in solution in the 1:4 molar ratio.

In the 1:6 molar ratio, an ill-defined second wave (c<sub>2</sub>) appeared only at a higher scan rate in the sweep limit from +0.70 to -0.20 V as in the 1:4 molar ratio. However, when extending the potential range to -1.0 V, a reduction peak (c<sub>3</sub>) appeared at a relatively more negative potential ( $\cong 0.67$  V) corresponding to Cu<sup>+/0</sup> reduction and a well-known anodic stripping peak (a<sub>2</sub>) at  $\cong -0.09$  V at 25 mV/s (Figure 7). Similar CV features can be noted for both 1:10 and 1:100 molar ratios, although the anodic peak (a<sub>2</sub>) did not appear in the latter case (Figure 8).



Figure 6: CV of 1:2 Cu(II)-B<sub>Z</sub>Im system at  $\upsilon=50~mV/s,~0.001~M~CuCl_2$  in ethylalcohol/0.1 M TBAP.



Figure 7: CV of 1:6 Cu(II)-B<sub>Z</sub>Im system at  $\upsilon = 25$  mV/s, 0.001 M CuCl<sub>2</sub> in ethylalcohol/0.1 M TBAP.

| I able | 2: USCHE VO.         | Itametric P          | arameters            | Ior [M]:[L           | ] cu(II)-B          |        | exes, u. | OUT M CUCI                                                  | 2.2H20 IN U.           | I M IBAF//              | Acetonitrile.          |
|--------|----------------------|----------------------|----------------------|----------------------|---------------------|--------|----------|-------------------------------------------------------------|------------------------|-------------------------|------------------------|
| Scan   |                      |                      | щ                    | irst Step            |                     |        |          |                                                             | Secon                  | id Step                 |                        |
| Rate   | Epc <sub>l</sub> /mV | Epa <sub>l</sub> /mV | Ipc <sub>l</sub> /µA | Ipa <sub>l</sub> /µA | E <sup>0</sup> ,/mV | ΔEp/mV | Ipa      | irr                                                         | Epc <sub>2</sub> /mV   | Epc <sub>3</sub> '/mV   | Epc <sub>3</sub> '/mV  |
| mVs-1  |                      |                      |                      | •                    |                     |        | Ipc      | Epc <sub>2</sub> /mV<br>(Ipc <sub>2</sub> /µA) <sup>a</sup> | (Ipa <sub>2</sub> /µA) | (Ipa <sub>3</sub> '/µA) | (Ipa <sub>3</sub> /µA) |
|        | L=0.002M             |                      |                      |                      |                     |        |          |                                                             |                        |                         |                        |
| 10     | +375                 | +515                 | 5.0                  | 4.0                  | +445                | 140    | 0.80     | +30                                                         |                        |                         |                        |
| 25     | +365                 | +505                 | 8.0                  | 6.0                  | +435                | 140    | 0.75     | +20                                                         | -270                   | -640                    | -730                   |
|        |                      |                      |                      |                      |                     |        |          | 0                                                           | (19.5)                 | (3.0)                   | (8.0)                  |
| 50     | +365                 | +510                 | 11.0                 | 8.5                  | +437                | 145    | 0.77     | -S                                                          |                        |                         |                        |
| 100    | +355                 | +505                 | 15.5                 | 12.0                 | +430                | 150    | 0.77     | -50                                                         |                        |                         |                        |
| 150    | +345                 | +510                 | 19.0                 | 15.0                 | +427                | 165    | 0.78     | -90                                                         |                        |                         |                        |
| 200    | +340                 | +515                 | 22.0                 | 17.0                 | +427                | 175    | 0.77     | -120                                                        |                        |                         |                        |
| 250    | +335                 | +515                 | 24.5                 | 18.5                 | +425                | 180    | 0.75     | -140                                                        |                        |                         |                        |
|        | L=0.004M             |                      |                      |                      |                     |        |          |                                                             |                        |                         |                        |
| 10     | +325                 | +425                 | 6.0                  | 5.0                  | +375                | 100    | 0.83     | -140                                                        |                        |                         |                        |
| 25     | +325                 | +425                 | 9.0                  | 7.5                  | +375                | 100    | 0.83     | -150                                                        |                        | -670                    | -690                   |
|        |                      |                      |                      |                      |                     |        |          |                                                             |                        | (8.5)                   | (0.6)                  |
| 50     | +325                 | +430                 | 13.0                 | 11.0                 | +377                | 105    | 0.84     | -160                                                        |                        |                         |                        |
| 100    | +310                 | +430                 | 18.0                 | 15.0                 | +370                | 120    | 0.83     | -170                                                        |                        |                         |                        |
| 150    | +310                 | +440                 | 22.0                 | 18.0                 | +375                | 130    | 0.81     | -180                                                        |                        |                         |                        |
| 200    | +310                 | +440                 | 25.0                 | 21.0                 | +375                | 130    | 0.82     | -180                                                        |                        |                         |                        |
| 250    | +305                 | +445                 | 28.0                 | 23.5                 | +375                | 140    | 0.83     | -185                                                        |                        |                         |                        |
| 300    | +295                 | +450                 | 31.0                 | 25.5                 | +372                | 155    | 0.82     | -210                                                        |                        |                         |                        |
|        | L=0.006M             |                      |                      |                      |                     |        |          |                                                             |                        |                         |                        |
| 10     | +305                 | +395                 | 7.5                  | 5.5                  | +350                | 90     | 0.73     |                                                             |                        |                         |                        |
| 25     | +305                 | +400                 | 10.5                 | 8.5                  | +353                | 95     | 0.80     |                                                             |                        |                         |                        |
| 50     | +305                 | +400                 | 15.0                 | 11.5                 | +353                | 95     | 0.76     |                                                             |                        |                         |                        |
| 100    | +300                 | +400                 | 19.5                 | 16.5                 | +350                | 100    | 0.84     |                                                             |                        |                         |                        |
| 150    | +290                 | +405                 | 24.0                 | 21.0                 | +347                | 115    | 0.87     |                                                             |                        |                         |                        |
| 200    | +285                 | +405                 | 28.0                 | 24.0                 | +345                | 120    | 0.85     |                                                             |                        |                         |                        |
| 250    | +285                 | +410                 | 31.0                 | 27.0                 | +348                | 125    | 0.87     |                                                             |                        |                         |                        |
| 300    | +285                 | +415                 | 335                  | 295                  | +350                | 130    | 0.88     |                                                             |                        |                         |                        |

117

(continued)

| Table 2  | : (continued         | ~                    |                      |                      |                     |        |                  |                         |                        |                         |                        |
|----------|----------------------|----------------------|----------------------|----------------------|---------------------|--------|------------------|-------------------------|------------------------|-------------------------|------------------------|
| Scan     |                      |                      | Fi                   | irst Step            |                     |        |                  |                         | Secon                  | d Step                  |                        |
| Rate     | Epc <sub>l</sub> /mV | Epa <sub>l</sub> /mV | Ipc <sub>l</sub> /µA | Ipa <sub>l</sub> /µA | E <sup>0</sup> ,/mV | ΔEp/mV | <u>Ipa</u>       | irr                     | Epc <sub>2</sub> /mV   | Epc <sub>3</sub> '/mV   | Epc <sub>3</sub> /mV   |
| mVs-1    |                      |                      |                      |                      |                     |        | Ipc <sub>I</sub> | Epc <sub>2</sub> /mV    | (Ipa <sub>2</sub> /µA) | (Ipa <sub>3</sub> '/µA) | (Ipa <sub>3</sub> /µA) |
|          | 1 0 0114             |                      |                      |                      |                     |        |                  | (Ipc <sub>2</sub> /µA)" |                        |                         |                        |
|          | L=0.01M              |                      |                      |                      |                     |        |                  |                         |                        |                         |                        |
| 10       | +275                 | +360                 | 7.0                  | 6.0                  | +318                | 85     | 0.85             |                         |                        |                         |                        |
| 25       | +265                 | +360                 | 11.0                 | 8.5                  | +313                | 95     | 0.77             |                         |                        | -690(7.5)               | -370(5.0)              |
| 50       | +260                 | +360                 | 15.0                 | 12.0                 | +310                | 100    | 0.80             |                         |                        | -870(14.5)              | -390(2.5)              |
| 100      | +250                 | +365                 | 21.0                 | 17.0                 | +308                | 115    | 0.80             |                         |                        | -850(17.0)              | $-370^{b}(5.0)$        |
| 150      | +250                 | +370                 | 26.0                 | 21.0                 | +310                | 120    | 0.80             |                         |                        |                         |                        |
| 200      | +225                 | +380                 | 29.0                 | 24.0                 | +303                | 155    | 0.82             |                         |                        |                         |                        |
| 250      | +225                 | +385                 | 32.0                 | 26.0                 | +305                | 160    | 0.81             |                         |                        |                         |                        |
| 300      | +215                 | +395                 | 34.0                 | 28.0                 | +305                | 180    | 0.81             |                         |                        |                         |                        |
|          | L=0.1M               |                      |                      |                      |                     |        |                  |                         |                        |                         |                        |
| 10       | +155                 | +225                 | 6.0                  | 5.0                  | +190                | 70     | 0.83             |                         |                        |                         | 2                      |
| 25       | +140                 | +225                 | 9.0                  | 7.5                  | +183                | 85     | 0.83             | -630(3.0)               | -730(12.5)             | -815(20.0)              |                        |
| 50       | +130                 | +255                 | 12.0                 | 10.5                 | +192                | 125    | 0.87             |                         |                        |                         |                        |
| 100      | +110                 | +235                 | 18.0                 | 15.0                 | +173                | 125    | 0.83             |                         |                        |                         |                        |
| 150      | +105                 | +235                 | 22.0                 | 18.0                 | +170                | 130    | 0.81             |                         |                        |                         |                        |
| 200      | +105                 | +240                 | 25.0                 | 20.0                 | +173                | 135    | 0.80             |                         |                        |                         |                        |
| 250      | +115                 | +240                 | 27.0                 | 23.0                 | +178                | 125    | 0.85             |                         |                        |                         |                        |
| 300      | +115                 | +245                 | 29.5                 | 25.0                 | +180                | 130    | 0.84             |                         |                        |                         | 5                      |
| Notes: & | i not measurable     | 4                    |                      |                      |                     |        |                  |                         |                        |                         |                        |
| 1        | rr irreversible      |                      |                      |                      |                     |        |                  |                         |                        |                         |                        |
| ~        | o = broad            |                      |                      |                      |                     |        |                  |                         |                        |                         |                        |
| 7        | All potentials are   | e given in mV        | vs SCE               |                      |                     |        |                  |                         |                        |                         |                        |
| ~        | All currents are     | given in µA          |                      |                      |                     |        |                  |                         |                        |                         |                        |

118

| u            |                      |                      | Fir                  | st Step              |       |        |                     |                                                | Secon                                          | d Step                                           |                                              |
|--------------|----------------------|----------------------|----------------------|----------------------|-------|--------|---------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------|
| te .<br>/s-1 | Epc <sub>l</sub> /mV | Epa <sub>l</sub> /mV | Ipc <sub>I</sub> /µA | Ipa <sub>l</sub> /µA | E°/mV | ΔEp/mV | <u>Ipal</u><br>Ipcl | Epc <sub>2</sub> /mV<br>(Ipc <sub>2</sub> /uA) | Epa <sub>2</sub> /mV<br>(Ipa <sub>2</sub> /uA) | Epc <sub>3</sub> '/mV<br>(Ipc <sub>3</sub> '/uA) | Epc <sub>3</sub> mV<br>(Ipc <sub>3</sub> /uA |
|              | L=0.002M             |                      |                      |                      |       |        |                     | 1                                              |                                                |                                                  |                                              |
| 10           | +350                 | +460                 | 3.0                  | 3.5                  | +405  | 110    | 1.16                | +230                                           |                                                |                                                  |                                              |
| 20           | 1250                 | ULVT                 | 01                   | 0 5                  | 110   | 001    | 30 1                | (N/M)                                          |                                                |                                                  |                                              |
| C3           | 000                  | 0/+-                 | ).<br>†              | 0.0                  | 01+1  | 170    | C7.1                | (0.30)                                         |                                                |                                                  |                                              |
| 50           | +335                 | +485                 | 5.0                  | 7.0                  | +410  | 150    | 1.40                | +150                                           |                                                | -775                                             | -960                                         |
|              |                      |                      |                      |                      |       |        |                     | (2.0)                                          |                                                | (6.5)                                            | (12.5)                                       |
| 00           | +320                 | +510                 | 7.0                  | 9.2                  | +415  | 190    | 1.31                | +100                                           |                                                |                                                  |                                              |
|              |                      |                      |                      |                      |       |        |                     | (3.0)                                          |                                                |                                                  |                                              |
| 50           | +320                 | +500                 | 9.0                  | 11.0                 | +410  | 180    | 1.22                | +80                                            |                                                |                                                  |                                              |
|              |                      |                      |                      |                      |       |        |                     | (4.0)                                          |                                                |                                                  |                                              |
| 00           | +315                 | +510                 | 10.0                 | 13.0                 | +412  | 195    | 1.30                | +65                                            |                                                |                                                  |                                              |
|              |                      |                      |                      |                      |       |        |                     | (5.0)                                          |                                                |                                                  |                                              |
| 50           | +305                 | +520                 | 11.0                 | 14.5                 | +412  | 215    | 1.31                | +50                                            |                                                |                                                  |                                              |
|              |                      |                      |                      |                      |       |        |                     | (5.5)                                          |                                                |                                                  |                                              |
| 00           | +300                 | +530                 | 12.0                 | 15.0                 | +415  | 230    | 1.25                | +40                                            |                                                |                                                  |                                              |
|              |                      |                      |                      |                      |       |        |                     | (0.9)                                          |                                                |                                                  |                                              |
|              | L=0.004M             |                      |                      |                      |       |        |                     |                                                |                                                |                                                  |                                              |
| 10           | +315                 | +425                 | 3.0                  | 3.5                  | +370  | 110    | 1.16                | N/A                                            |                                                |                                                  |                                              |
| 25           | +320                 | +435                 | 4.5                  | 5.0                  | +377  | 115    | 1.10                | N/A                                            |                                                |                                                  |                                              |
| 50           | +300                 | +455                 | 6.0                  | 6.2                  | +377  | 155    | 1.03                | $+150^{a}$                                     |                                                |                                                  | -680                                         |
|              |                      |                      |                      |                      |       |        |                     |                                                |                                                |                                                  | (8.0)                                        |
| 00           | +290                 | +470                 | 8.0                  | 9.2                  | +380  | 180    | 1.15                | $+100^{a}$                                     |                                                |                                                  |                                              |
| 50           | +280                 | +480                 | 9.5                  | 11.0                 | +380  | 200    | 1.15                | $+95^{a}$                                      |                                                |                                                  |                                              |
| 000          | +265                 | +495                 | 11.0                 | 12.5                 | +380  | 230    | 1.13                | $+70^{a}$                                      |                                                |                                                  |                                              |
| 50           | +245                 | +515                 | 12.0                 | 14.0                 | +380  | 270    | 1.16                | $+40^{a}$                                      |                                                |                                                  |                                              |

119

| Rate Epc/mV Epa/mV Ipc/µA   mVs-1 L=0.006M 4.2   10 +310 +390 4.2   55 +295 +405 5.5   50 +285 +420 7.0   100 +270 +440 9.0   150 +255 +460 10.5   200 +255 +460 10.5   250 +255 +466 12.0   10 +275 +375 4.0   250 +275 +375 4.0   26 +275 +375 4.0   26 +275 +380 6.0 |                                           | E <sup>o</sup> '/mV |        |                     |                                                |                                                |                                                  |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|--------|---------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                   | 5.0<br>7.0<br>9.0<br>5.11.0               | 1350                | ΔEp/mV | <u>Ipal</u><br>Ipcl | Epc <sub>2</sub> /mV<br>(Ipc <sub>2</sub> /uA) | Epa <sub>2</sub> /mV<br>(Ipa <sub>2</sub> /uA) | Epc <sub>3</sub> '/mV<br>(Ipc <sub>3</sub> '/uA) | Epc <sub>3</sub> mV<br>(Ipc <sub>3</sub> /uA) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 3.5<br>5.0<br>7.0<br>5.1<br>9.0<br>5.11.0 | 1250                |        |                     |                                                | 1                                              |                                                  |                                               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                    | 5.0<br>7.0<br>5 11.0                      | 000                 | 80     | 0.83                | -670<br>(3.5)                                  |                                                |                                                  |                                               |
| 50 +285 +420 7.0   100 +270 +440 9.0   150 +255 +460 10.5   200 +255 +466 12.0   250 +255 +465 13.0   10 +275 +375 40   25 +275 +375 4.0   26 +275 +376 6.0   26 +275 +380 6.0                                                                                          | 5 7.0<br>5 9.0                            | +350                | 110    | 06.0                |                                                | 06-<br>(0.6)                                   |                                                  |                                               |
| 100 +270 +440 9.0   150 +260 +460 10.5   200 +255 +460 12.0   250 +255 +465 13.0   10 +275 +375 4.0   25 +275 +375 4.0   26 +275 +380 6.0                                                                                                                               | 5 9.0<br>5 11.0                           | +353                | 135    | 1.0                 |                                                |                                                |                                                  |                                               |
| 150 +260 +460 10.5   200 +255 +460 12.0   250 +255 +465 13.0   10 +275 +375 4.0   25 +275 +375 4.0   26 +275 +376 6.0                                                                                                                                                   | 5 11.0                                    | +355                | 170    | 1.0                 |                                                |                                                |                                                  |                                               |
| 200 +255 +460 12.0   250 +255 +465 13.0   10 +275 +375 4.0   25 +275 +376 6.0   50 +555 +360 6.0                                                                                                                                                                        |                                           | +360                | 200    | 1.04                |                                                |                                                |                                                  |                                               |
| 250 +255 +465 13.0   L=0.01M L=0.01M 4.0 10 +275 +375 4.0   25 +275 +380 6.0 5.0 5.0 5.0                                                                                                                                                                                | 0 12.5                                    | +358                | 205    | 1.04                |                                                |                                                |                                                  |                                               |
| L=0.01M<br>10 +275 +375 4.0<br>25 +275 +380 6.0<br>50 ±555 ±205 8.0                                                                                                                                                                                                     | 0 14.0                                    | +360                | 210    | 1.07                |                                                |                                                |                                                  |                                               |
| 10 +275 +375 4.0   25 +275 +380 6.0   50 ±255 ±265 8.0                                                                                                                                                                                                                  |                                           |                     |        |                     |                                                |                                                |                                                  |                                               |
| 25 +275 +380 6.0                                                                                                                                                                                                                                                        | 4.0                                       | +325                | 100    | 1.0                 |                                                |                                                |                                                  | 2                                             |
| 50 ±755 ±205 8.0                                                                                                                                                                                                                                                        | 6.0                                       | +327                | 105    | 1.0                 | -660                                           | -215                                           |                                                  |                                               |
| 50 ±255 ±205 0.0                                                                                                                                                                                                                                                        |                                           |                     |        |                     | (1.0)                                          | (0.9)                                          |                                                  |                                               |
| 0.0 0001 0071 00                                                                                                                                                                                                                                                        | 8.0                                       | +325                | 140    | 1.0                 |                                                |                                                |                                                  |                                               |
| 100 +235 +415 11.0                                                                                                                                                                                                                                                      | 0 11.0                                    | +325                | 180    | 1.0                 |                                                |                                                |                                                  |                                               |
| 150 +215 +430 13.0                                                                                                                                                                                                                                                      | 0 13.0                                    | +323                | 215    | 1.0                 |                                                |                                                |                                                  |                                               |
| 200 +210 +435 15.0                                                                                                                                                                                                                                                      | 0 15.0                                    | +323                | 225    | 1.0                 |                                                |                                                |                                                  |                                               |
| 250 +190 +440 17.0                                                                                                                                                                                                                                                      | 0 17.0                                    | +315                | 250    | 1.0                 |                                                |                                                |                                                  |                                               |

|   |         | Epc <sub>3</sub> mV   | $(Ipc_3/\mu A)$   |                              |      |      |       |      |      |      |      |      |                    |                    |
|---|---------|-----------------------|-------------------|------------------------------|------|------|-------|------|------|------|------|------|--------------------|--------------------|
| č | I Step  | Epc <sub>3</sub> '/mV | $(Ipc_3'/\mu A)$  | 2011-000 - million - 000-000 |      |      |       |      |      |      |      |      |                    |                    |
| c | Second  | Epa <sub>2</sub> /mV  | $(Ipa_2/\mu A)$   |                              |      |      |       |      |      |      |      |      |                    |                    |
|   |         | Epc <sub>2</sub> /mV  | $(Ipc_2/\mu A)$   |                              |      | -668 | (7.5) |      |      |      |      |      |                    |                    |
|   |         | <u>Ipal</u>           | IpcI              |                              | 0.75 | 0.90 |       | 0.85 | 0.94 | 0.95 | 0.95 | 1.0  |                    |                    |
|   |         | ΔEp/mV                |                   |                              | 95   | 115  |       | 140  | 165  | 195  | 220  | 235  |                    |                    |
|   |         | E <sup>o'/mV</sup>    |                   |                              | +223 | +223 |       | +215 | +218 | +213 | +210 | +208 |                    |                    |
| c | st Step | Ipa <sub>I</sub> /µA  |                   |                              | 3.0  | 4.5  |       | 6.0  | 8.5  | 10.0 | 11.5 | 13.0 | le                 |                    |
| ļ | Firs    | Ipc <sub>I</sub> /µA  |                   |                              | 4.0  | 5.0  |       | 7.0  | 9.0  | 10.5 | 12.0 | 13.0 | ot measurab        |                    |
|   |         | Epa <sub>l</sub> /mV  |                   |                              | +270 | +280 |       | +285 | +300 | +310 | +320 | +325 | urrent (Ipc2) is r | IC                 |
|   |         | Epc <sub>l</sub> /mV  |                   | L=0.1M                       | +175 | +165 |       | +145 | +135 | +115 | +100 | 06+  | orresponding c     | VI IIUL IIICabulau |
| c | Scan    | Rate                  | mVs <sup>-1</sup> |                              | 10   | 25   |       | 50   | 100  | 150  | 200  | 250  | Notes: a, c        | TINT               |

| 0   |
|-----|
| 0   |
| ne  |
| 2   |
| ti  |
| NC  |
| 3   |
| C   |
|     |
| (.) |
| e   |
| 0   |
| 3   |
| H   |

N/A not appeared All potentials are given in mV vs SCE



Figure 8: CVs of 1:10 (a) and (B) 1:100 Cu(II)- $B_Z$ Im system at v = 25 mV/s, 0.001 M CuCl<sub>2</sub> in ethylalcohol/0.1 M TBAP.

The peak current ratio for Ipa<sub>I</sub>/Ipc<sub>I</sub> was determined to be  $\cong$  1.0 for 1:6, 1:10 and 1:100 Cu(II)-B<sub>Z</sub>Im systems (Table 3), which indicated chemical reversibility. However,  $\Delta$ Ep increased with a scan rate indicating chemical quasi-reversibility (slow electron transfer).<sup>12</sup> A common observation in these solvents was that the first reduction potential (Epc<sub>I</sub>) shifted cathodically with an increased concentration of the ligands; an opposite trend was observed for the corresponding anodic peak (Epa<sub>I</sub>). These observations indicated that the higher order complexes of Cu(B<sub>Z</sub>Im)nX<sub>2</sub> (n = 2, 4) were formed with an increased concentration of the ligand.

### 4. CONCLUSION

Cyclic voltammetry of Cu(II)- $B_ZIm$  complexes in organic solvents (dimethylsulfoxide, acetonitrile and ethyl alcohol) was complex because it was comprised of electrooxidation and electroreduction of copper (0), copper (I) and copper (II) species.

## 5. ACKNOWLEDGEMENTS

The authors acknowledge with thanks the receipt of financial assistance as a fellowship from the University Grants Commission (UGC), New Delhi, India, for carrying out this research.

### 6. **REFERENCES**

- 1. Nagawade, R. R. & Shinde, D. B. (2006). BF<sub>3</sub>.OEt<sub>2</sub> promoted solvent free synthesis of benzimidazole derivatives. *Chin. Chem. Lett.*, 17(4), 453–456.
- 2. Materazzi, S., D'Ascenzo, G. & Curini, R. (1996). Thermoanalytical study of benzimidazole complexes with transition metal ions: Copper (II) complexes. *Thermochim. Acta*, 286(1), 1–15.
- 3. Faltermeier, R. B. (1998). A corrosion inhibitor test for copper-based artifacts. *Stud. Conserv.*, 44(2), 121–128.
- 4. Khaled, K. F. (2003). The inhibition of benzimidazole derivatives on corrosion of iron in 1M HCl solutions. *Electrochim. Acta*, 48(17), 2493–2503.
- 5. Obot, I. B. & Obi–Egbedi, N. O. (2010). Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. *Corros. Sci.*, 52, 657–660.
- 6. Wang, S., Yu, S., Luo, Q., Wang, Q., Shi, J. & Wu, Q. (1994). Synthesis, structure and electrochemical behaviour of cobalt (II) complexes with 2,6-bis(benzimidazole- 2'-yl) pyridine. *Transition Met. Chem.*, 19(2), 205–208.
- 7. Goodgame M. & Haines, L. I. B. (1966). The preparation, spectral and magnetic studies of copper (II) complexes of benzimidazole, *J. Chem. Soc.*, A, 174.
- 8. Materazzi, S., D'Ascenzo, G., Curini, R. & Fava, L. (1993). Nickel (II) benzimidazole bromide complexes: Discussion of the proposed isomerism by thermoanalytical investigation. *Thermochim. Acta*, 228, 197–212.
- 9. Sahin, E., Ide, S., Kurt, M. & Yurdakul, S. (2003). Structural investigation of dichlorobis (benzimidazole) Zn (II) complex. *Z. Kristallogr.*, 218(5), 385–387.
- 10. Rocha, R. C., Rein, F. N. & Toma, H. E. (2001). Rutherium and iron complexes with benzotriazole and benzimidazole derivatives as simple models for proton-coupled electron transfer systems. *J. Braz. Chem. Soc.*, 12(1), 201–210.

- 11. Mashkin, O. A., Subbotin, N. B. & Ivanov, A. S. (1992). Electrochemical behaviour of copper complexes with chelate nitrogen-containing ligands in aprotic organic media. 37(1), 33–35.
- 12. Nicholson, R. & Shain, I. (1964). Theory of stationary electrode polarography: Single and cyclic methods applied to reversible, irreversible and kinetic. *Anal. Chem.*, 36, 706–723.
- 13. Ukpong, E. J. (1996). PhD thesis, Allahabad University, India.
- 14. Subrahmanya, R. S. (1960). *Advances in Polarography*. Oxford: Pergamon Press.
- 15. Ukpong, E. J. & Prasad, J. (forthcoming). Cyclic voltammetric investigation of copper (II) imidazole complexes in aqueous medium: Part 2. J. Phy. Sci. and Def. Studies.