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Abstrak: Penganggar pincang telah dicadangkan sebagai satu cara untuk meningkatkan 
kejituan anggaran parameter dalam model regresi apabila kekolinearan wujud dalam 
model tersebut. Sebab-sebab untuk menggunakan penganggar pincang telah 
dibincangkan dalam kertas kerja ini. Satu senarai penganggar-penganggar pincang juga 
dirumuskan dalam kertas kerja ini. 
 
Abstract: Some biased estimators have been suggested as a means of improving the 
accuracy of parameter estimates in a regression model when multicollinearity exists. The 
rationale for using biased estimators instead of unbiased estimators when 
multicollinearity exists is given in this paper. A summary for a list of biased estimators is 
also given in this paper. 
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1. INTRODUCTION 
 

When serious multicollinearity is detected in the data, some corrective 
actions should be taken in order to reduce its impact. The remedies for the 
problem of multicollinearity depend on the objective of the regression analysis. 
Multicollinearity causes no serious problem if the objective is to predict. 
However, multicollinearity is a problem when our primary interest is in the 
estimation of parameters.1 The variances of parameter estimate, when 
multicollinearity exists, can become very large. Hence, the accuracy of the 
parameter estimate is reduced. 

 
One obvious solution is to eliminate the regressors that are causing the 

multicollinearity. However, selecting regressors to delete for the purpose of 
removing or reducing multicollinearity is not a safe strategy. Even with extensive 
examination of different subsets of the available regressors, one might still select 
a subset of regressors that is far from optimal. This is because a small amount of 
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sampling variability in the regressors or the dependent variable in a multicollinear 
data can result in a different subset being selected.2

 
An alternative to regressor deletion is to retain all of the regressors, and 

to use a biased estimator instead of a least squares estimator in the regression 
analysis. The least squares estimator is an unbiased estimator that is frequently 
used in the regression analysis. When the primary interest of the regression 
analysis is in the parameter estimation, some biased estimators have been 
suggested as a means to improve the accuracy of the parameter estimate in the 
model when multicollinearity exists.  

 
The rationale for using biased estimators instead of unbiased estimators 

in a regression model when multicollinearity exists is presented in Section 2 
while an overview of biased estimators is presented in Section 3. Some hybrids of 
the biased estimators are presented in Section 4. A comparison of the biased 
estimators is presented in Section 5. 
 

 
2. THE RATIONALE FOR USING BIASED ESTIMATORS 
 

Suppose there are n observations. A linear regression model with  
standardized independent variables, 

p

1 2, , ..., pz z z , and a standardized dependent 
variable, , can be written in the matrix form y

 
= +Y Zγ ε  (1) 

 
where  is an  vector of standardized dependent variables,  is an  
matrix of standardized independent variables,  is a 

Y 1×n Z ×n p
γ 1×p  vector of parameters, 

 is an  vector of errors such that  and  is an identity matrix 
of dimension . 
ε 1×n 2~ N( , )σ nε 0 I nI

×n n
 

Let 1ˆ ( )−′ ′=γ Z Z Z Y  be the least squares estimator of the parameter . The 
least squares estimator, , is an unbiased estimator of  because the expected 
value of  is equal to . Furthermore, it is the best linear unbiased estimator of 
the parameter, . 

γ
γ̂ γ

γ̂ γ
γ

 
Instead of using the least squares estimator, biased estimators are 

considered in the regression analysis in the presence of multicollinearity. When 
the expected value of the estimator is equal to the parameter which is supposed to 
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be estimated, then the estimator is said to be unbiased; otherwise, it is said to be 
biased.  

 
The mean squared error of an estimator is a measure of the goodness of 

the estimator. The least squares estimator (which is an unbiased estimator) has no 
bias. Thus, its mean squared error is equal to its variance. However, the variance 
of the least squares estimator may be very large in the presence of 
multicollinearity. Thus, its mean squared error may be unacceptably large, too. 
This would reduce the accuracy of parameter estimate in the regression model. 
Although the biased estimators have a certain amount of bias, it is possible for 
the variance of a biased estimator to be sufficiently smaller than the variance of 
the unbiased estimator to compensate for the bias introduced. Therefore, it is 
possible to find a biased estimator where its mean squared error is smaller than 
the mean squared error of the least squares estimator.1 Hence, by allowing for 
some bias in the biased estimator, its smaller variance would lead to a smaller 
spread of the probability distribution of the estimator. Thus, the biased estimator 
is closer on average to the parameter being estimated.1
 
 
3. THE BIASED ESTIMATORS 
 

There are several biased estimators that have been proposed as 
alternatives to the least squares estimator in the presence of multicollinearity. By 
combining these biased estimators, some hybrids of these biased estimators are 
formed. Before presenting the details of biased estimators, a linear regression 
model which is in canonical form is introduced.  

 
Let  be a  diagonal matrix whose diagonal elements are 

eigenvalues of . The eigenvalues of 
λ ×p p

′Z Z ′Z Z  are denoted by 1 2, , ...,λ λ λp . Let the 
matrix 1 2[ , , ..., ]= pT t t t  be a ×p p  orthonormal matrix consisting of the  
eigenvectors of , where 

p
′Z Z jt , 1, 2, ...,=j p , is the j-th eigenvector of . 

Note that matrix  and matrix  satisfy 
′Z Z

T λ ′ ′ =T Z ZT λ  and ′ ′= =T T TT I , where  
is a  identity matrix. By using matrix λ  and matrix , the linear regression 
model, 

I
×p p T

= +Y Zγ ε , as given by equation (1), can be transformed into a canonical 
form 

      
= +Y Xβ ε  (2)  

         
where  is an  matrix, =X ZT ×n p ′=β T γ  is a 1×p  vector of parameters and 

. ′ =X X λ
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The least squares estimator of the parameter  is given by β
 

1ˆ ( )−′ ′=β X X X Y  (3)  

 
The least squares estimator, , is an unbiased estimator of  and is often called 
the Ordinary Least Squares Estimator (OLSE) of parameter β . 

β̂ β

 
In the presence of multicollinearity, biased estimators are proposed as 

alternatives to the OLSE (which is an unbiased estimator) in order to increase the 
accuracy of the parameter estimate. The details of these biased estimators are 
given below. The Principal Component Regression Estimator (PCRE) is one of 
the proposed biased estimators. The PCRE is also known as the Generalized 
Inverse Estimator.3–6 Principal component regression approaches the problem of 
multicollinearity by dropping the dimension defined by a linear combination of 
the independent variables but not by a single independent variable. The idea 
behind principal component regression is to eliminate those dimensions that 
cause multicollinearity. These dimensions usually correspond to eigenvalues that 
are very small. The PCRE of parameter β  is given by 

 
ˆ ˆ′=r rβ T γ r

,

   (4) 
                        

where 1ˆ ( )r r r r r
−′ ′ ′ ′=γ T T Z ZT T Z Y  is the PCRE of parameter , γ 1 2( , , ..., )r r=T t t t  is 

the matrix of the remaining eigenvectors of ′Z Z  after we have deleted  of 
the columns of  and it satisfies 

−p r
T 1 2= diag( , , ..., )λ λ λ′ ′ =r r rT Z ZT λ p .  

 
The Shrunken Estimator, or the Stein Estimator, is another biased 

estimator. It was proposed by Stein.7,8 It is further discussed by Sclove (1968)9 

and Mayer and Willke.10 The Shrunken Estimator is given by 
 

ˆ ˆ=s sβ β         (5) 
       
where 0 1< <s . 
 

Trenkler proposed the Iteration Estimator.11 The Iteration Estimator is 
given by 

, ,
ˆ

δ δ=m mβ X Y                                     (6) 
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where the series , 0
( )δ δ δ

=
′ ′= −∑m i

m i
X I X X 0, 1, 2, ...X , =m , 

max

10 δ
λ

< <  and maxλ  

refers to the largest eigenvalue. 
 
Trenkler stated that ,δmX  converges to the Moore-Penrose inverse 

 of .1( )+ −′ ′=X X X X X 11

 
Due to the fact that the least squares estimator based on minimum 

residual sum of squares has a high probability of being unsatisfactory when 
multicollinearity exists in the data, Hoerl and Kennard proposed the Ordinary 
Ridge Regression Estimator (ORRE) and the Generalized Ridge Regression 
Estimator (GRRE).12,13 The proposed estimation procedure is based on adding 
small positive quantities to the diagonal of ′X X . The GRRE is given by 

 
-1ˆ ( )′ ′= +Kβ X X K X Y                  (7) 

 
where  is a diagonal matrix of biasing factors . diag( )= ikK 0, 1, 2, ...,> =ik i p
When all diagonal elements of the matrix, , in the GRRE have values that are 
equal to , the GRRE can be written as the ORRE. The ORRE Estimator is given 
by 

K
k

 
-1ˆ ( )′ ′= +k kβ X X I X Y             (8) 

where . 0>k
 

Authors proved that the ORRE has a smaller mean squared error 
compared to the OLSE.12 The following existence theorem is stated in their 
paper, “There always exists a  such that the mean squared error of  is less 
than the mean squared error of ”. There is also an equivalent existence theorem 
for the GRRE.

0>k ˆ
kβ

β̂
12 

 
The ORRE and the GRRE turn out to be popular biased estimators.  

Many studies based on the ORRE and the GRRE have been done since the work 
of Hoerl and Kennard.12,13 Some methods have been proposed for choosing the 
value of .k 14,15 In 1986, Singh et al.16 proposed the Almost Unbiased Generalized 
Ridge Regression Estimator (AUGRRE) by using the jack-knife procedure. This 
estimator reduces the bias uniformly for all components of the parameter vector. 
The AUGRRE is given as 

 
-2 2 ˆ( ( ) )′= − +*

Kβ I X X K K β                       (9) 
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where ,  . diag( )= ikK 0, 1, 2, ...,> =ik i p

)

 
In the case where all diagonal elements of the matrix, , in the 

AUGRRE have values that are equal to , then we may write the Almost 
Unbiased Ridge Regression Estimator (AURRE) as

K
k

17

 
-2 2 ˆ( ( ) )∗ ′= − +k k kβ I X X I β                      (10) 

where . 0>k
 

On the other hand, Akdeniz et al.18(2004) derived general expressions for 
the moments of the Lawless and Wang operational AURRE for individual 
regression coefficients.18,19  

 
There are some other biased estimators developed based on the ORRE, 

such as the Modified Ridge Regression Estimator (MRRE) introduced by 
Swindel.20,21 and the Restricted Ridge Regression Estimator (RRRE) proposed by 
Sarkar22,23 The MRRE and the RRRE are given in equations (11) and (12), 
respectively. 

 
-1( ) (∗ ∗′ ′= + +k kb( ,b ) X X I X Y bk                     (11) 

 
where  is a prior mean and it is assumed that ∗b ˆ∗ ≠b β ,  .     0>k
 

 * ( ) [ ( ) ]′= +k k -1 -1 *β I X X β                                    (12) 
 

where ,  is the restricted least squares 
estimator and the set of linear restrictions on the parameters are represented by 

0>k * -1 -1 -1ˆ ( ) [ ( ) ] (′ ′ ′ ′= + −β β X X R R X X R r Rβ̂)

=Rβ r . 
 
 
4.  HYBRIDS OF THE BIASED ESTIMATORS  
 

Biased estimators have been proposed as alternatives to the OLSE when 
multicollinearity exists in the data. Major types of the proposed biased estimators 
are the PCRE, the Shrunken Estimator, the Iteration Estimator, the ORRE and the 
GRRE. Some studies have been done on combining the biased estimators. Thus, 
some hybrids of these biased estimators have been proposed. 

 
Baye and Parker proposed the −r k  Class Estimator which combined the 

techniques of the ORRE and the PCRE.24 They proved that there exists a  0>k
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where the mean squared error of the −r k Class Estimator is smaller than the 
mean squared error of the PCRE. The −r k Class Estimator of parameter  is 
given by 

β

                           (13) ˆ ˆ( ) [ ( )]′=r r rk kβ T γ
 

where 1ˆ, 0, ( ) ( )−′ ′ ′≤ > = +r r r r r rr p k k k ′γ T T Z ZT I T Z Y  is the −r k  Class Estimator of 
parameter ,  is the remaining eigenvectors of γ rT ′Z Z  after having deleted  
of the columns of  and satisfying 

−p r
T 1 2= diag( , , ..., )λ λ λ′ ′ =r r rT Z ZT λ p

ˆ )

ˆ )

.  
 
Liu introduced a biased estimator by combining the advantages of the 

ORRE and the Shrunken Estimator.25 This new biased estimator is known as the 
Liu Estimator. The Liu Estimator can also be generalized to the Generalized Liu 
Estimator (GLE). The Liu Estimator and the GLE are given in equations (14) and 
(15), respectively.  

 
                                    (14) -1ˆ ( ) (′ ′= + +d dβ X X I X Y β

where . 0 1< <d
                                   (15) -1ˆ ( ) (′ ′= + +Dβ X X I X Y Dβ

 
where  is a diagonal matrix of the biasing factors, , and , 

.  
diag( )= idD id 0 1< <id

1, 2, ...,=i p
 

When all the diagonal elements of matrix  in the GLE have values that 
are equal to , the GLE can be written as the Liu Estimator. Liu showed that the 
Liu Estimator is preferable to the OLSE in terms of the mean squared error 
criterion.

D
d

25 The advantage of the Liu Estimator over the ORRE is that the Liu 
Estimator is a linear function of . Hence, it is easy to choose . Recently, 
Akdeniz and Ozturk derived the density function of the stochastic shrinkage 
parameters of the operational Liu Estimator by assuming normality.

d d

26

 
Some studies based on the Liu Estimator and the GLE have been done. 

Akdeniz and Kaciranlar introduced the Almost Unbiased Generalized Liu 
Estimator (AUGLE).21 This estimator is a bias corrected GLE. When all the 
diagonal elements of the matrix  in the AUGLE have values that are equal to d, 
then the Almost Unbiased Generalized Liu Estimator can be written as the 
Almost Unbiased Liu Estimator (AULE).

D

17 The AUGLE and the AULE are given 
by equations (16) and (17), respectively. 

 
-2 2 ˆ[ ( ) ( ) ]′= − + −*

Dβ I X X I I D β                      (16) 
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where  and , diag( )= idD 0 1< <id 1, 2, ...,=i p .  
 

                       (17) -2 2 ˆ[ ( ) (1 ) ]′= − + −d d*β I X X I β
where . 0 1< <d
 

Kaciranlar et al. introduced a new estimator by replacing the OLSE, , 
in the Liu Estimator, by the restricted least squares estimator, 

β̂
*β .27 They called it 

the Restricted Liu Estimator (RLE) and it is given as 
 

                             (18) -1ˆ ( ) (′ ′= + +rd d *β X X I X X I β)

ˆ )
 
where  is the restricted least squares 
estimator and the set of linear restrictions on the parameters are represented by 

-1 -1 -1ˆ ( ) [ ( ) ] (′ ′ ′ ′= + −*β β X X R R X X R r Rβ

=Rβ r . 
 

In 2001, Kaciranlar and Sakallioglu28 proposed the −r d  Class Estimator 
by combining the Liu Estimator and the PCRE. The −r d  Class Estimator is a 
general estimator which includes the OLSE, the PCRE and the Liu Estimator as a 
special case. Kaciranlar and Sakallioglu have shown that the  Class 
Estimator is superior to the PCRE in terms of mean squared error.

−r d
28 The  

Class Estimator of parameter β  is given by 
−r d

 
                                              (19) ˆ ˆ( ) [ ( )]′=r r rd dβ T γ

 
where  , 0 1,≤ < <r p d 1ˆ ˆ( ) ( ) ( )−′ ′ ′ ′= + +r r r r r r rd d ′ rγ T T Z ZT I T Z Y T γ  is the  Class 
Estimator of parameter , 

−r d
γ 1ˆ ( )−′ ′ ′=r r r r r ′γ T T Z ZT T Z Y  is the PCRE of parameter , 

 is the remaining eigenvectors of 
γ

rT ′Z Z  after having deleted  of the 
columns of  and satisfying 

−p r
T 1 2= diag( , , ..., )λ λ λ′ ′ =r r r pT Z ZT λ .  

 
Table 1 displays a matrix showing the biased estimators and the hybrids 

that have been proposed. The hybrids that have been proposed are the  Class 
Estimator, the Liu Estimator and the 

−r k
−r d  Class Estimator. The Liu Estimator 

combines the advantages of the ORRE and the Shrunken Estimator. The  
Class Estimator combined the techniques of the ORRE and the PCRE while the 

 Class Estimator combined the techniques of the Liu Estimator and the 
PCRE. There are some biased estimators developed based on the ORRE, the 
GRRE, the Liu Estimator and the GLE. The MRRE, the RRE, the AUGRRE and 
the AURRE are the biased estimators developed based on the ORRE and the 

−r k

−r d
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GRRE while the AUGLE, the AULE and the RLE were developed based on the 
Liu Estimator and the GLE. The equations for the biased estimators presented in 
Sections 3 and 4 are summarized in Table 2. 

 
Table 1: Matrix of the biased estimators and the hybrids. 
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R

E 
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R
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r-
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C
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r-
d 

C
la

ss
 

Es
tim
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or

 

PCRE 
 

 r-k Class 
Estimator 

  r-d Class 
Estimator 

 

  

GRRE, 
ORRE 

 MRRE, 
RRRE, 

AUGRRE, 
AURRE 

 

Liu 
Estimator 

    

Shrunken 
Estimator 
 

       

Iteration 
Estimator 
 

       

GLE, Liu 
Estimator 
 

    AUGLE, 
AULE, 

RLE 

  

r-k Class 
Estimator 
 

       

r-d Class 
Estimator 
 

       

 
 

5.  REVIEW ON THE COMPARISONS BETWEEN THE BIASED 
ESTIMATORS  

 
The comparisons among the biased estimators as well as the OLSE are 

found in several papers. Most of the comparisons were done in terms of the mean 
squared error. An estimator is superior to the another if its mean squared error is 
less than the other.  

 
 



 

Table 2: Summary of a list of estimators. 
 

No. Estimators* Equation Relevant References 
1 OLSE  1ˆ ( )−′ ′=β X X X Y  Belsley 199134

2 PCRE ˆ ˆ′=r rβ T γ r  
where 1ˆ ( )−′ ′ ′=r r r r r ′γ T T Z ZT T Z Y , is 
the PCRE of parameter , 

 is the remaining 
eigenvectors of 

γ

1 2[ , , ..., ]=rT t t t r

′Z Z  after having 
deleted −p r  of the columns of T  
and satisfying 

1 2= = diag( , , ..., )λ λ λ′ ′r r r pT Z ZT λ  

Massy 1965; 
Marquardt 1970; 
Hawkins 1973; 
Greenberg 1975 

3 Shrunken 
Estimator 

ˆ ˆ=s sβ β  
where 0 1< <s  
 

Stein 1960; cited by 
Hocking et al. 1976; 
Sclove 1968;  
Mayer & Willke 1973 

4 Iteration 
Estimator 
 

, ,
ˆ

δ δ=m mβ X Y  
where the series 

, 0
( )δ δ δ

=
′ ′= −∑m i

m i
X I X X X , 

, 0, 1, 2, ...=m
max

10 δ
λ

< <  and 

maxλ  refers to the largest eigenvalue  

Trenkler 1978 

5 GRRE 
 

-1ˆ ( )′ ′= +Kβ X X K X Y  
where diag( )= ikK  is a diagonal 
matrix with biasing factors 

 0, 1, 2, ...,> =ik i p

Hoerl & Kennard 
1970a,b  

6 ORRE -1ˆ ( )′ ′= +k kβ X X I X Y  
where  0>k

Hoerl & Kennard 
1970a,b 

7 AUGRRE 
 

-2 2 ˆ( ( ) )′= − +*
Kβ I X X K K β  

where diag( )= ikK ,  
 0, 1, 2, ...,> =ik i p

Singh et al. 1986 

8 AURRE 
 

-2 2 ˆ( ( ) )∗ ′= − +k k kβ I X X I β  
where  0>k

Akdeniz & Erol 2003 

 

(continue on next page) 
 
 



 

Table 2: (continued) 
 

No. Estimators* Equation Relevant References 
9 MRRE -1( ) ( )∗ ∗′ ′= + +k kb( ,b ) X X I X Y bk   

where ∗b  is a prior mean and it is 
assumed that ˆ∗ ≠b β ,   0>k

Swindel 1976; cited 
by Akdeniz & 
Kaciranlar 1995 

10 RRRE * -( ) [ ( ) ]′= +k k 1 -1 *β I X X β  
where , 

 
is the restricted least squares 
estimator and the set of linear 
restrictions on the parameters are 
represented by 

0>k
* -1 -1 -1ˆ ˆ( ) [ ( ) ] (′ ′ ′ ′= + −β β XX R R XX R r Rβ)

=Rβ r  

Sarkar, 1992; cited 
by Kaciranlar et al. 
1998 

11 −r k  Class 
Estimator 

ˆ ˆ( ) [ ( )]′=r r rk kβ T γ  
where , 0,≤ >r p k  

1ˆ ( ) ( )−′ ′ ′= +r r r r r rk k ′γ T T Z ZT I T Z Y  is 
the −r k  Class Estimator of 
parameter ,  is the remaining 
eigenvectors of 

γ rT
′Z Z  after having 

deleted −p r  of the columns of T  
and satisfying 

1 2= diag( , , ..., )′ ′ = λ λ λr r r pT Z ZT λ

)

 

Baye & Parker 1984 

12 GLE -1ˆ ˆ( ) (′ ′= + +Dβ X X I X Y Dβ  
where diag( )= idD  is a diagonal 
matrix of biasing factors  and 

, 
id

0 1< <id 1, 2, ...,=i p  

Liu 1993 

13 Liu Estimator -1ˆ ( ) (′ ′= + +d dβ X X I X Y β̂)  
where 0 1< <d  

Liu 1993 

14 AUGLE -2 2 ˆ[ ( ) ( ) ]′= − + −*
Dβ I X X I I D β ,  

where diag( )= idD  and 0 1< <id , 
 1, 2, ...,=i p

Akdeniz & 
Kaciranlar 1995 

15 AULE  -2 2 ˆ[ ( ) (1 ) ]′= − + −d d*β I X X I β  
where 0 1< <d  

Akdeniz & Erol 2003 

 (continue on next page) 
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Tabel 2: (continued) 
 

No. Estimators* 
 

Equation Relevant 
References 

16 RLE -1ˆ ( ) (′ ′= + +rd d *β X X I X X I β)

)

 
where 

 
is the restricted least squares estimator and 
the set of linear restrictions on the 
parameters are represented by 

-1 -1 -1ˆ ˆ( ) [ ( ) ] (′ ′ ′ ′= + −*β β X X R R X X R r Rβ

=Rβ r  

Kaciranlar et al. 
1999 

17 −r d  Class 
Estimator  

ˆ ˆ( ) [ ( )]′=r r rd dβ T γ   
where , 0 1,≤ < <r p d  

1ˆ ˆ( ) ( ) ( )−′ ′ ′ ′= + +r r r r r r rd d ′ rγ T T Z ZT I T Z Y T γ
 is the −r d  Class Estimator of parameter 

, γ 1ˆ ( )−′ ′ ′=r r r r r ′γ T T Z ZT T Z Y  is the PCRE 
of parameter ,  is the remaining 
eigenvectors of 

γ rT
′Z Z  after having deleted 

 of the columns of  and satisfying −p r T

1 2= diag( , , ..., )λ λ λ′ ′ =r r r pT Z ZT λ  

Kaciranlar & 
Sakallioglu 
2001 

 

* No. 1 is an unbiased estimator while No.2 – No. 17 are biased estimators 
 

However, Singh et al.16 compared the GRRE and the AUGRRE in terms 
of bias. It is found that there is a reduction in the bias of the AUGRRE when 
compared with the bias of the GRRE in terms of absolute value.  

 
Table 3 gives a summary of the comparisons among the biased estimators 

and the OLSE (which is an unbiased estimator) while Table 4 gives the relevant 
references of the comparisons. 

 
Hoerl and Kennard compared the OLSE, , with the ORRE, , and the 

GRRE, .
β̂ ˆ

kβ
ˆ

Kβ
12 It is found that there exists a  such that the mean squared error 

of  is less than the mean squared error of . There is also an equivalent 
existence theorem for the GRRE.

0>k
ˆ

kβ β̂
12 

 
Trenkler compared the Iteration Estimator ,

ˆ
δmβ  and the OLSE, .β̂ 11,29 It 

was found that the mean squared error of ,
ˆ

δmβ  is less than the mean squared error 

of . β̂
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Table 3: Summary of the comparisons among the estimators. 
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Estimator 
 

          ix xii  xiv 

AUGLE, 
AULE 
 

             

                      
RLE 
 

             

r-d Class 
Estimator 
 

             

 
In 1984, Baye and Parker24 compared the −r k  Class Estimator, , 

with the PCRE, . They showed that there exists a  such that the mean 
squared error of  is less than the mean squared error of  for . 

ˆ ( )r kγ
ˆ rγ 0>k

ˆ ( )r kγ ˆ rγ 0 < ≤r p
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Table 4: References for the comparisons among the estimators. 
 

References Comparison between the Estimators 
(i) Hoerl & Kennard 1970a (a) OLSE and ORRE 

(b) OLSE and GRRE 
(ii) Trenkler 1978 (a) Iteration Estimator and OLSE 
(iii) Trenkler 1980 
 

(a) Iteration Estimator and OLSE 
(b) Iteration Estimator and ORRE 
(c) Iteration Estimator and Shrunken  
     Estimator 
(d) Iteration Estimator and PCRE 

(iv) Baye & Parker 1984 (a) PCRE and −r k  Class Estimator 
(v) Singh et al. 1986 (a) GRRE and AUGRRE 
(vi) Pliskin 1987 (a) MRRE and ORRE 
(vii) Nomura 1988 (a) GRRE and AUGRRE 

(b) OLSE and AUGRRE 
(viii) Liu 1993 (a) OLSE and Liu Estimator 
(ix) Akdeniz & Kaciranlar 1995 (a) GLE and AUGLE 

(b) OLSE and AUGLE 
(x) Sarkar 1996 (a) −r k  Class Estimator and PCRE 

(b) −r k  Class Estimator and OLSE 
(c) −r k  Class Estimator and ORRE 

(xi) Kaciranlar et al. 1998 (a) MRRE and RRRE 
(xii) Kaciranlar et al. 1999   (a) RLE and Liu Estimator 
(xiii) Sakallioglu et al. 2001 (a) ORRE and Liu Estimator 

(b) Iteration Estimator and Liu Estimator 
(xiv) Kaciranlar & Sakallioglu 
2001 

(a) −r d  Class Estimator and PCRE 
(b) −r d  Class Estimator and Liu Estimator 
(c) −r d  Class Estimator and OLSE 
 

(xv) Akdeniz & Erol 2003 (a) GRRE and GLE 
(b) AUGRRE and AUGLE 

 
A comparison between the MRRE, ∗kb( ,b ) , and the ORRE, , was 

done by Pliskin.

ˆ
kβ

30 A necessary and sufficient condition for the mean squared 
error matrix of  minus the mean squared error matrix of  ˆ

kβ
∗kb( ,b )  to be positive 

semidefinite when both estimators are computed using the same value of  was 
developed. The author suggested that researchers who are inclined to use the 
conventional ORRE should consider the MRRE if prior information is available. 

k
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1

Liu made a comparison between the OLSE, , and the Liu Estimator, 
.

β̂
ˆ

dβ
25 He showed that there exists 0 < <d  such that the mean squared error of  

is less than mean squared error of .  

ˆ
dβ

β̂
 
A comparison between the −r k  Class Estimator and the OLSE, the 

PCRE, the ORRE was done by Sarkar (1996).31 Necessary and sufficient 
conditions for the superiority of the −r k  Class Estimator over each of the other 
three estimators using the mean squared error matrix criterion were obtained. 

 Kaciranlar et al.23 compared the RRRE and the MRRE. They proved that 
the RRRE is superior to the MRRE using the mean squared error matrix criterion 
whether the linear restrictions are true or not. Kaciranlar et al.27 introduced the 
RLE and showed that the RLE is superior in the scalar mean squared error sense, 
to both the restricted least squares estimator and to the Liu Estimator when the 
restrictions are indeed correct. They also derived conditions for the superiority of 
the RLE over both the restricted least squares estimator and the Liu Estimator 
when the restrictions are not correct. 

 
Kaciranlar and Sakallioglu made a comparison between the  Class 

Estimator, , with the PCRE, , the Liu Estimator and the OLSE 
respectively.

−r d
ˆ ( )r dγ ˆ rγ
28 They showed that there exist 0 1< <d  such that the mean squared 

error of  is less than the mean squared error of . The comparisons 
between the  Class Estimator and the Liu Estimator as well as the  
Class Estimator with the OLSE show that which estimator is better depends on 
the unknown parameters, the variance of the error term in the linear regression 
model and the choice of biased factor, , in the biased estimators. 

ˆ ( )r dγ ˆ rγ
−r d −r d

d
 
In addition, there are also several comparisons in terms of mean squared 

error which produced similar conclusions. Trenkler compared the Iteration 
Estimator with the ORRE, the Shrunken Estimator and the PCRE respectively.29 

Nomura compared the AUGRRE with the GRRE and the OLSE respectively.32 
Akdeniz and Kaciranlar made a comparison between the GLE and the AUGLE.21 
They also compared the OLSE and the AUGLE. Recently, Sakallioglu et al.33 
compared the Liu Estimator with the ORRE and the Iteration Estimator 
respectively. Akdeniz and Erol made a comparison between the GRRE and the 
GLE.17 They also compared the AUGRRE and the AUGLE. These comparisons 
showed that the better estimator depends on the unknown parameters, the 
variance of the error term in the linear regression model and the choice of the 
biasing factors in biased estimators. 
  
 



An Overview of Biased Estimators                                                                                                  104 
 
6.  CONCLUSION 
 

Multicollinearity is one of the problems that arise in regression analysis. 
Thus, multicollinearity diagnostics should be carried out to detect the problem of 
multicollinearity in the data. The remedies for the problem of multicollinearity 
depend on the objective of the regression analysis. Multicollinearity causes no 
serious problems if the objective is prediction. However, multicollinearity is a 
problem when the primary interest is in the estimation of the parameters in a 
regression model. 

 
In the presence of multicollinearity, the minimum variance of the least 

squares estimator may be unacceptably large and hence reduces the accuracy of 
the parameter estimates. Some biased estimators have been suggested as a means 
to improve the accuracy of the parameter estimate in the model when 
multicollinearity exists. There are several biased estimators that have been 
proposed, such as the PCRE, the Shrunken Estimator, the Iteration Estimator, the 
ORRE and the GRRE. In addition, the MRRE, the RRRE, the AUGRRE and the 
AUGRRE are biased estimators developed based on the ORRE and the GRRE. 

 
  By combining these biased estimators, some hybrids of these biased 
estimators, such as the  Class Estimator, the Liu Estimator, the GLE and the 

 Class Estimator are obtained. Furthermore, the AUGLE, the AUGLE and 
the RLE were developed based on the Liu Estimator and the GLE. 

−r k
−r d

 
From most of the comparisons between the biased estimators,17,21,29,32,33 

we find that the better estimator depends on the unknown parameters and the 
variance of error term in the linear regression model as well as the choice of the 
biased factors in biased estimators. Therefore, there is still room for improvement 
where new classes of biased estimators could be developed in order to provide a 
better solution. 
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