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ABSTRACT: The thermal degradation behaviour and decomposition kinetics of oil  
palm empty fruit bunch (OPEFB) pellets were investigated using a thermogravimetric 
analyser and the distributed activation energy model (DAEM). The OPEFB pellets were 
heated from 30°C to 1000°C at three different heating rates (5, 10, 20°C min–1) under a 
nitrogen atmosphere. The thermogravimetric-derivative thermogravimetric (TG-DTG) 
curves revealed that the non-isothermal decomposition of OPEFB pellets occurred in the 
following three stages: drying (35°C–175°C), active pyrolysis (200°C–370°C) and 
passive pyrolysis (370°C–1000°C), which resulted in the loss of moisture, volatile matter 
and char, respectively. The distributed activation energy model was subsequently used to 
determine the apparent activation energies (E) and pre-exponential factors (A), which 
ranged from 37.89 kJ mol–1 to 234.05 kJ mol–1 and from 2.05 × 102 min–1 to 3.54 × 1018 

min–1, respectively, for conversions of α = 0.05–0.70 during the thermal degradation. The 
wide E and A distributions obtained from the kinetic analysis are attributed to the 
complex chemical reactions of pyrolysis. The kinetic analysis revealed the kinetic 
compensation effect (KCE), with the highest E and A values occurring in the range of  
α = 0.2–0.4. This result indicates that the active pyrolysis stage is the rate-determining 
step during the thermal decomposition of OPEFB pellets. 
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The thermal decomposition parameters, including the onset temperature Ti, peak 
decomposition temperature Tp, mass loss rate (MLR), burnout temperature Tf, and 
residual mass, were determined from the TG-DTG peaks using Proteus 6.1 
thermal analysis software (Netzsch). 

The decomposition kinetics of the OPEFB pellets were analysed using the 
DAEM. The DAEM was employed in this study because it was assumed that the 
non-isothermal pyrolytic decomposition of OPEFB pellets occurs via a set of 
irreversible first-order reactions.27 This model can be used to simulate the change 
in the overall conversion or the yield of a given component during a thermal 
conversion process.19 Therefore, the change in the volatile content during OPEFB 
pellet pyrolysis can be expressed as: 

   1 ,
V

E T f E dE
V

    (1) 

where V is the total volatile content evolved at time t, V∞ is the effective volatile 
content of the fuel, Φ(E,T) describes the temperature-dependent activation energy 
E, f(E) is the normalised activation energy distribution curve for the irreversible 
first-order reactions, and A is the frequency factor corresponding to the activation 
energy E. The function Φ(E,T), which describes fuel devolatisation at the heating 
rate β, can be expressed mathematically as:27,28  

 
0

, exp
T

E RT

T

A
E T e dT


 

   
   (2) 

This equation can be solved by using numerical estimation techniques and 
introducing a step function at E = Es, where Es is the activation energy at a given 
temperature T and constant heating rate β. Therefore, the function Φ(E,T) in 
Equation 1 can be simplified to: 

 1
Es

V
f E dE

V





    (3) 

This condition is valid when the following relation holds for E = Es: 

E at  ,E T = 0.58 (4) 
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Consequently, Equation 4 is applicable for many combinations of β and f(E), and 
the expression for A that corresponds to activation energy E at heating rate β can 
be written as: 

20.545 E RTE
e

ART

   (5) 

Thus, an approximate equation for Φ(E,T) is: 

 
2

, exp E RTART
E T e

E
 

   
 

 (6) 

This mathematical approximation can be used to model i reactions occurring at 
temperature T and constant heating rate β as shown in Equation 7: 

   
expi i i i id V V d V V A E V V

dT dT RT V V
  

 

      
  

 (7) 

Consequently, this approximation can be used to determine the overall reaction 
rates from the evolved and effective volatile contents Vi and Vi∞, respectively, for 
the ith first-order reaction at temperature T. Integrating Equation 7 results in the 
following expression for the devolatisation rate at a constant heating rate: 

0

2

1 exp exp exp
T

E RTi i i i

T
i

V A E A RT
e

V RT E 




              
  (8) 

After taking the natural logarithm of each side of the equation and rearranging it, 
Equation 8 becomes: 

2ln ln ln ln 1 i

i

AR V E

E V RTT





                  
       

 (9) 

Using the relation 1–Vi/Vi∞ = Φ(E,T) = 0.58, a simplified form of Equation 9 can 
be obtained, resulting in the linear relationship between the kinetic parameters β, 
A, E and T shown in Equation 10. For simplicity, the term 0.6075 can be set to 
zero (0), which corresponds to the assumption that 1–Vi/Vi∞ = Φ(E,T) = e–1. 
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their low moisture content, and reactor operational problems due to sintering, 
agglomeration and corrosion should be minimised by their low ash content.32 

3.2 Thermal Analysis 

Figure 1 shows the TG-DTG curves for the OPEFB pellets obtained at a heating 
rate of 20°C min–1. The results indicate that three distinct mass losses 
corresponding to different decomposition stages, i.e., drying (I), active pyrolysis 
(II) and passive pyrolysis (III) stages, occurred during the thermal conversion 
process.33,34 The drying stage (I), which was observed between 35°C and 175°C, 
involved the removal of light volatile compounds and water molecules bound by 
surface tension. The mass loss during drying was 8.0%, which is in agreement 
with the moisture (M) content measured by proximate analysis (Table 1).  

 

Figure 1: TGA-DTG curves for the OPEFB pellets obtained at a heating rate of  
20°C min–1. 

A significant mass loss of 55% was observed during the active pyrolysis stage, 
which occurred between 200°C and 370°C. According to Shafizadeh,35 the major 
components of lignocellulosic biomasses are hemicellulose, cellulose and lignin, 
which decompose in the temperature ranges of 160°C–360°C, 240°C–390°C and 
180°C–900°C, respectively.14 Therefore, during the active pyrolysis of OPEFB 
pellets in the temperature range of 200°C–70°C, hemicellulose and cellulose 
(holocellulose) were degraded. Similarly, Yang et al.14 showed that palm kernel 
shell decomposes between 220°C and 340°C due to hemicellulose and cellulose 
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degradation. The shoulder peak at 305°C was attributed to hemicellulose 
degradation.2,5 The holocellulose components constitute the volatile (liquid and 
gas) biomass pyrolysis products.36 

The final stage (III) occurred between 370°C and 1000°C and resulted in a mass 
loss of 15.18%, as indicated by the tailing observed in the TG-DTG curves. This 
stage is typically attributed to lignin decomposition, which occurs slowly over a 
broad temperature range of 180°C–900°C during thermal conversion.14,37 The 
slow lignin decomposition rate was due to the high lignin content, which resulted 
in char production as shown by a final residual char mass of 22.02% after thermal 
decomposition at a heating rate of 20°C min–1. 

3.3 Effect of the Heating Rate on the Thermal Decomposition 

Table 2 shows the effects of the heating rate (5, 10 and 20°C min–1) on the 
thermal characteristics, including the onset temperature Ti, peak decomposition 
temperature Tp, mass loss rate (MLR), and burnout temperature Tf, of the OPEFB 
pellets during active pyrolysis.  

Table 2: Thermal characteristics of the OPEFB pellets during active pyrolysis. 

Heating 
rate  

(°C min–1) 

Onset temp.
Ti (°C ) 

Peak temp.
Tp (°C ) 

Mass loss 
rate (MLR)

(%/min) 

Burnout 
temp. Tf 

(°C) 

Residual 
weight 

(%) 

5 257.40 308.30 4.05 339.40 11.03 

10 266.40 316.70 7.75 353.40 15.29 

20 273.30 329.60 13.84 370.70 22.02 

The fuel thermal characteristics MLR, Ti, Tp and Tf increased as the heating rate 
increased. The average MLR, Ti, Tp and Tf values were 8.55% min–1, 265.70°C, 
318.20°C and 354.50°C, respectively. The residual mass also increased from 11% 
to 22% as the heating rate was increased from 5°C min–1 to 20°C min–1. In 
addition, the results show that the fuel pyrolysis was initiated at temperatures 
above 250°C and the onset temperature increased with increasing heating rate. 
Similar results were reported for oil palm shell, kernel and fibre wastes.16 The 
effects of the heating rate on the OPEFB pellet decomposition are revealed by the 
TG and DTG curves shown in Figures 2 and 3, respectively. 
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Figure 2: TG curves for the thermal decomposition of the OPEFB pellets. 

 

Figure 3: DTG curves for the thermal decomposition of the OPEFB pellets. 
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Similarly, the TG-DTG curves shifted to the right (to higher temperatures) as the 
heating rate increased, due to a thermal delay caused by increasing the heating 
rate, which resulted in a decrease in the fuel degradation time during its pyrolytic 
decomposition.6 Generally, higher heating rates increase the heat transfer in the 
system and reduce the melted solid viscosity, thereby increasing the volatile yield 
during thermal analysis. Similar findings have been reported in the literature.38,39 

Consequently, it can be concluded that the pyrolysis reaction temperature, 
heating rate and holocellulose and lignin reactivities are the most significant 
factors influencing biomass thermal degradation. Therefore, the pyrolysis product 
yield, composition and distribution can be optimised by altering these parameters. 

3.4 Kinetic Analysis 

The DAEM model was used to determine the kinetic parameters of OPEFB pellet 
decomposition. The kinetic parameters of thermal reactions significantly affect 
their reactivity and sensitivity. The activation energy E is defined as the 
minimum amount of energy required for the reactants to react; therefore, higher E 
values mean slower overall reaction rates. Figure 4 shows the regression plots 
used to estimate the kinetic parameters for fuel conversions of α = 0.05–0.7 at 
different heating rates. The correlation coefficients of all the plots were high with 
an average R value of 0.9608.  

 
Figure 4: Regression lines for the OPEFB pellet decomposition kinetics. 
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Using Equation 10, the apparent activation energies (E) and frequency factors (A) 
were calculated from the slopes and intercepts, respectively, of the linear curves 
fitted to the ln(β/T2) against (1/T) plots. The plots in Figure 4 indicate that for 
different V/V∞, the volatile conversion during the fuel thermal decomposition can 
be described by a set of parallel first-order reactions.28 Furthermore, it can be 
inferred that the drying, active pyrolysis and passive pyrolysis stages of the 
thermal decomposition occurred in the α ranges of 0.05–0.10, 0.20–0.60 and  
> 0.70, respectively. However, according to Aboyade et al.,17 the calculated  
E and A values can only be referred to as "apparent values" because they account 
for the contributions of competing reactions to the overall reaction rate. The 
apparent activation energies (E) and frequency factors (A) for the fuel are 
presented in Table 3. 

Table 3: Thermal Kinetic parameters of the OPEFB pellets. 

Conversion ( α ) E ( kJ mol–1 ) A (min–1)  R 

0.05 37.89 2.05 × 1002 0.9248 

0.10 69.17 9.75 × 1003 0.9982 

0.20 158.33 1.14 × 1012 0.9887 

0.30 234.05 3.54 × 1018 0.9973 

0.40 183.19 1.74 × 1013 0.9886 

0.50 152.69 1.26 × 1010 0.9984 

0.60 157.42 1.23 × 1010 0.9590 

0.70 183.86 1.66 × 1010 0.8271 

Average 147.08 4.42 × 1017 0.9603 

The average E and A values were 147.08 kJ mol–1 and 4.42 × 1017 min–1, 
respectively. The apparent activation energy (E) ranged from 37 kJ mol–1 to 234 
kJ mol–1, whereas the frequency factor ranged from 2.05 × 102 min–1 to 3.54 × 
1018 min–1. For comparison, the average E values for selected biomasses 
determined using the DAEM model are presented in Table 4.  

Table 4: Apparent activation energies of lignocellulosic biomasses. 

Biomass Average E (kJ mol–1) Reference 

Cornstalk 62–169 17, 23, 35 

Jerusalem artichoke 146–232 5 

Birch  178–216 20 

Lignin 83–195 36 

Wood pellets 136–299 37 

Ethiopian mustard 167–232 38 
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The E and A values of the OPEFB pellets (Table 3) and other biomasses (Table 
4) have wide distributions and fluctuate significantly in the kinetic analyses. 
These results can be attributed to the energy requirements of the complex 
chemical reactions that occur during thermal conversion. Furthermore, they 
highlight the effect of the conversion on the activation energy.9 Therefore, it can 
be inferred that the reaction rate of the drying stage (α = 0.05–0.10), which had 
an activation energy in the range of 37.89–69.17 kJ mol–1, was faster than those 
of the active pyrolysis (α = 0.20–0.60) and passive pyrolysis (α > 0.80) stages.  

3.5 Kinetic Compensation Effect (KCE) 

Figure 5 shows the relationships between the conversion and the kinetic 
parameters E and A. These relationships were found to be linear, demonstrating 
the kinetic compensation effect (KCE) in the thermal conversion of the OPEFB 
pellets. The KCE is the increase in the frequency factor A that occurs to offset an 
increase in the activation energy E. 

 

Figure 5: Kinetic compensation effect for the OPEFB pellets. 

This phenomenon can also describe the OPEFB reactivity during the thermal 
decomposition process. Based on the activation energy definition, high E values 
correspond to slow reaction rates. Therefore, at the OPEFB pellet conversion of  
α = 0.3, where E = 234.05 kJ mol–1 and A = 3.54 × 1018 min–1, the thermal 
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