Co-precipitation Synthesis with a Variation of the Sulphur Composition of Kesterite Phase Cu2ZnSnS4 (CZSS) without Annealing Process


Commercially available compound CuInGa (S, Se) can be replaced with emerging quaternary compound Cu2ZnSnS4 (Copper Zinc Tin Sulphur or CZSS) for photovoltaic applications due to the high absorption coefficient and optimum bandgap. Unstable sulphur and the co-existence of binary and ternary phases in CZSS are the main obstacles for a single-phase kesterite quaternary compound. To overcome these issues, the researchers are synthesising the CZSS in presence of sulphur and selenium environment. The sulphurization and selenization are the constraints for the synthesis of CZSS and these processes make it costlier. In the present work, the wet-chemical method (i.e., co-precipitation method) was used to synthesise CZSS without vacuum annealing where the sulphur constituent was controlled by changing the stoichiometric ratio. X-ray diffraction (XRD) and Raman analysis confirm that the synthesised CZSS was in polycrystalline and single-phase kesterite nature. The average crystallite sizes for thiourea 16, 18, 20 mmol were found 15 nm, 17 nm and 17 nm, respectively. Surface morphology of the as-prepared film was identified by scanning electron microscope (SEM) and optical bandgap of the film was obtained ~1.33 eV by UV-visible (UV-vis) analysis. The 18 mmol of thiourea with stoichiometric ratio 4:2:2:9 is found the best optimisation for synthesising the CZSS without vacuum annealing by the co-precipitation method. Thus, the thin film of such synthesised CZSS may be employed for the low-cost photovoltaic application.