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ABSTRACT: The effect of partial replacement of R = KMnO4 in Tl2Ba2Ca(Cu1-xRx)2Oδ+6 (TBCCO or Tl-2212) superconductor samples with x = 0.0, 0.05 and 0.1 was investigated. The samples were prepared by standard solid-state reaction methods in a sealed quartz tube under normal pressure. The investigation consisted of X-ray diffraction (XRD) and DC electrical resistance measurements under fixed magnetic field. Transport measurements indicated that the superconducting transition temperature values of the samples depend on the amount of the added KMnO4. The values of Tc and To of the samples decreased with increasing KMnO4 content. The possible reasons for the observed degradation in the superconducting and microstructure properties of Tl-2212 due to the addition of KMnO4 were discussed.
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1.          INTRODUCTION

Since the discovery of the high-temperature ceramic superconductors, numerous studies have been carried out to characterise the properties of these materials.1–8 The optimum hole concentration in the conducting CuO2 planes is the source of the highest critical temperature in the high Tc Tl2Ba2Ca(Cu1-xRx)2Oδ+6 (Tl-2212) superconductor.


Doping with various elements was found to be useful and effective for enhancing the high-temperature superconductivity (HTS) properties.1 In an earlier work, the effect of KMnO4 doping on the properties of Tl-based superconductors was studied.10 We found the optimum amount of KMnO4 at which the properties of the Tl-based superconductor are improved. Here, we analyse the structure and study the electrical properties of the KMnO4-doped Tl-based superconductor synthesised at the optimum conditions. Characterisation of the temperature and magnetic field dependencies of HTS is of considerable importance for both theoretical and applied fields of science.

The CuO2 planes play a crucial role in the HTc TBCCO superconducting family. The effect of the substitution on the Cu sites has the much stronger effect than that on the other sites because substitutions/dopings directly affect the superconductivity owing to the changes in CuO2 plane properties. A superconductor-insulator transition (SIT) can occur owing to the impurities that increase the scattering of the carriers in the CuO2 planes and/or owing to the variations of the carrier concentration by substitutions in the material.11

The intercalation of oxygen (Oδ) in the charge reservoir layer controls the flow of carriers toward the conducting CuO2 planes, i.e., an optimum amount of Oδ would help the electrons to flow toward the conducting CuO2 planes.12

The replacement process has an important effect on two parameters. First, the replacement process increases or decreases the oxygen content in the sample. If there is a decrease in the oxygen content, we observe a tail in the R-T curve of the samples. Mezzetti et al.13 found that the Y-123 system exhibits a pronounced tail in the low temperature region of the R-T curve, likely due to the offstoichiometric oxygen content. On the other hand, when the replacement process increases the oxygen content, there is an increase in the pressure inside the quartz tube, which is the second parameter that is strongly affected by the replacement process. The increased pressure inside the quartz tube allows the formation of other phases inside the sample.

In the TBCCO system, the suppression of Tc due to the substitution/doping of other elements on Cu sites has been attributed to the Abrikosov and Gor’kov pair-breaking mechanism.14,15 Variation of the carrier concentration (particularly holes) in the CuO2 planes, unbinding of the Cooper pairs and carrier localisation induced by the structural disorder are also useful for explaining the decrease in Tc.16

In this study, we have prepared superconducting samples of Tl2Ba2Ca(Cu1-xRx)2Oδ+6, where R = KMnO4, and x = 0.5, 1.0 and 2.0 using a solid-state reaction technique. Microstructure, electrical, and magnetic properties of these samples were investigated.

2.          EXPERIMENTAL

Samples with the nominal composition of Tl2Ba2CaCu2O6+δ (TBCCO) were synthesised by the conventional single-step solid-state reaction technique. Stoichiometric amounts of highly pure Tl2O3, BaO2, CaO and CuO were mixed using an agate mortar to make fine powder that was sieved in 64 μm sieves to obtain a homogeneous mixture. The powder was pressed in the form of a disc with the diameter and thickness of 1.5 cm and 0.2 cm, respectively. Then, the samples were wrapped in a silver foil to reduce the thallium evaporation during the preparation. To protect the furnace from possible hazardous effects, a sealed quartz tube with a diameter of 1.5 cm and length of 15 cm was placed in a closed stainless steel protecting tube. Finally, the sealed tube was placed horizontally in a furnace, heated at the rate of 4°C min–1 to 820°C, and held at this temperature for 4 h, followed by cooling to room temperature at the rate of 0.5°C min–1. To obtain the optimally doped Tl-2223 superconducting material, the samples were annealed in normal atmosphere at 500°C.

The electrical resistivity of the prepared samples was measured by the conventional four-probe technique from room temperature down to the zero resistivity temperature using a closed cryogenic refrigeration system employing helium gas as the working medium.

The samples have the shape of parallel sides with the approximate dimensions of 15 × 2 × 3 mm3; the connections of the copper leads with the sample were made using a conductive silver paint, and a constant current of 2 mA provided from a Keithley 2400 current source is passed through the sample during resistance measurements in the four-probe method in order to avoid the heating of the samples.

We use a Keithley 2400 Source Meter as the DC bias source because it can be operated in either the voltage or current source mode. In all experiments, the stable magnetic field up to 12 T was applied by a Lake Shore Superconducting Magnet System and the temperature of the sample was controlled precisely within 1 mK. During the cooling process, both the Keithley Source Meter and Lakeshore temperature controller are controlled by the LabVIEW software.


3.          RESULTS AND DISCUSSION

3.1        Powder X-ray Diffraction Analyses

Figure 1 shows the X-ray diffraction scans of Tl2Ba2Ca(Cu1-xRx)2Oδ+6, superconductor samples (R = KMnO4, x = 0.0 and 0.1). The pattern peaks for x = 0, and 0.1 can be indexed using the P4/mmm space group of the Tl-2212 phase with a tetragonal unit cell, and small traces of the Tl-1212 phase and unknown peaks.
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Figure 1:      Powder XRD patterns for Tl2Ba2Ca(Cu1-xRx)2Oδ+6, superconductor samples with R = KMnO4, (x = 0.0 and 0.1).



The crystal symmetry of the sample is tetragonal and the unit cell parameters of the sample (i.e., a and c) were found to be a = 3.8355°A and c = 29.6081A°, close to the typical values of the Tl-2212 phase.16

The lattice parameters “a” and “c” as functions of KMnO4 content are listed in Table 1. Examination of the data in the table clearly shows that the changes in the lattice parameters “a” and “c” are insignificant. The calculated lattice parameters of the Tl2212 phase showed an increase of both the a- and c-lattice parameters with the KMnO4 content. It is possible that substitution of smaller Mn7+ (ionic radius 0.25 Å) for the larger CuO2+ spacer ion (ionic radius 0.73 Å) caused the increase in the “a” and c“-lattice parameters.


Table  1:      Tc onset, Tc zero, room-temperature resistance at 300K and lattice parameters of Tl2Ba2Ca(Cu1-xRx)2Oδ+6



	Samples
	Tc onset (K)

	Tc zero (K)

	Resistance at 300K(Ω)

	a=b (A°)

	c (A°)




	x = 0
	113

	97

	0.478

	3.8355

	29.6081




	x = 0.05
	108

	20

	2.896

	–

	–




	x = 0.1
	112

	58

	2.681

	3.8427

	29.6211





3.2        Electrical Resistance (DC) Measurements

The curves for the normalised resistance versus temperature of Tl2Ba2Ca(Cu1-xRx)2Oδ+6, (R = KMnO4, x = 0.0, 0.05 and 0.1) are shown in Figure 2. The x = 0.0 sample exhibits a sharp superconducting transition. In agreement with the XRD spectra, this sharp phase transition indicates that the sample is a single phase Tl-2212. The x = 0.05 sample has a second phase and reaches the zero resistance value smoothly when the temperature reaches 20K. On the other hand, the x = 0.1 sample shows a sharp transition, and its resistance reaches zero at 58K. Comparing this sample with the x = 0.05 sample shown in Figure 2, we note that the second phase and the long tail found in x = 0.05 sample have disappeared in the x = 0.1 sample. This may be related to the added KMnO4 absorbing the excessive oxygen and acting as a controller of the pressure. This means that this sample has been improved. For the 0.0 and 0.1 samples, the variation of the resistance with the temperature is found to be linear from room temperature to 125K. A linear variation of the normal-state resistance reveals that the electron-phonon scattering is the dominant mechanism down to the Tc of each sample. For the x = 0.05 KMnO4-substituted sample, a small resistance drop was obtained at 108K. This suggests that this sample consists of a mixed phase of HTc superconducting materials. Substitution of KMnO4 at the Cu site of this sample led to a change from the metallic behaviour and a decrease in the Tc and T0 values of the samples.
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Figure 2:      Temperature dependence of normalised resistance for the samples.



Table 1 shows the values of Tc onset, Tc zero, resistivity (at 300 K), and Tl2212 lattice parameters for Tl2Ba2Ca(Cu1-xRx)2Oδ+6, (R = KMnO4, x = 0.0, 0.05 and 0.1). The room temperature resistance in these samples varies from 0.478 to 2.681 Ω. These samples showed the onset of superconductivity (Tconset) at approximately 113K, 108K and 112K and zero resistance critical temperatures {Tc(R = 0)} of approximately 97, 20 and 58K for x = 0.0, 0.05, and 0.1, respectively. Initially, Tc(R = 0) decreases with added KMnO4 and then starts to increase.

As shown in Figure 2, KMnO4-added samples showed a broad transition, indicating the presence of impurities and weak links between the superconducting grains. The increase of the transition width and appearance of double-step behaviour indicate that the KMnO4-added samples have a greater number of grain boundaries because the double-step resistive transition is an indication of weak links.17,18

It is well-known that substitutions on the Cu sites have a very strong effect on the superconducting properties. In particular, the electronic configuration of the system is destroyed by the substitution of KMnO4 for Cu2+, causing the reduction of the electronic conductivity in the CuO planes through the formation of impurity bonds. Therefore, the superconducting phase coherence is destroyed.


3.3        Effect of DC Magnetic Field Results

To investigate the effect of KMnO4 substitution on the superconducting properties of the samples, we performed DC magnetic field measurements. We only measured the effect of the DC magnetic field up to 10 T of the x = 0.0 sample because the other samples (x = 0.05, 0.1) did not show superconducting properties below 77K. The magnetoresistance versus temperature curves of the x = 0.0 and 0.1 samples under different magnetic fields are shown in Figures 3(a–b) as an example. The applied magnetic field strongly affect the superconducting transition temperature Tc.


[image: art]

Figure 3:      R–T curves under different magnetic field up to 10 T for the samples with (a) x = 0.0, (b) x = 0.1




All samples show a metallic behaviour in the high temperature region followed by a superconducting transition as the temperature was lowered. The superconducting transition width (ΔTc), which is the difference between the superconducting transition temperature (Tc, onset) and the zero resistance temperature (Tzero) (ΔTc = Tc, onset – Tzero) was analysed in two different stages. The main steep part of the resistance remains almost unchanged by the application of magnetic field. In the first stage, at just below the onset of the transition temperature very close to Tc, onset, the structure can be associated with the intergrain transitions; thus, an applied field of up to 10 T does not appreciably affect the intragranular transition. This is also related to the absence of the flux traps because vortex pinning is ineffective in this first stage as previously noted by many groups.19 The broadening effect induced by the applied magnetic fields is similar to that in the HTc systems.

However, the tail was enlarged significantly in the second stage. We believe that the pinning of vortices is highly effective and therefore, the resistance depends strongly on the applied magnetic field. Therefore, the change of the resistance (tails in the second stage) is due to the thermally activated flux creep process. However, in the x = 0.1 sample, no T0 value was obtained under the applied magnetic field of 1 T. We believe that intergrowth of the impurity phases in the main matrix and weak coupling formation between the grains play an important role in decreasing of the superconductivity.

As shown in Figure 3(a, b), the tail region represents the interactions of the grain boundaries at which the magnetic field easily destroys the interactions between the grains while the superconductivity inside the grains is preserved. Similar results were obtained by other research groups.20–23

The temperature dependence of the calculated upper critical field (Hc2) values for the Tl-2212 sample is plotted in Figure 4. It was found that Hc2(T) values increased with decreasing temperature. Hc2(0) was calculated from the extrapolation of the sample Hc2(T) to T = 0K.24,25 The Hc2(0) value was 22.3 T, corresponding to the 10% of the value of the resistivity measured in the normal state ρn (T) at 140K.
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Figure 4:      Upper critical magnetic field Hc2(T) vs. Tc for the x = 0 sample.



4.          CONCLUSION

In the present work, the effects of KMnO4 substitution on the phase evolution and transport properties of the TBCCO (Tl-2212) system were studied. It is believed that the incorporation of the KMnO4 particles into the interstitial sites in the material rather than the occupation of the Cu sites caused a change in the unit cell parameters. Tc and T0 decreased monotonically as a result of the substitution of KMnO4 into the Tl-2212 system. The weak coupling between the KMnO4 particles and TBCCO grains and the decrease of the carrier concentration were found to affect Tc and T0. The analyses of crystal structures are important for understanding the properties of high-Tc superconductors and for exploring new materials. The upper critical magnetic field Hc2(0) at T = 0K for 10% of Rn was calculated by the extrapolation of Hc2(T) to T = 0K.
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