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ABSTRACT: The lack of comprehensive data on the fuel properties of newly discovered 
coal deposits in Nigeria has hampered the prospective utilisation for power generation. 
Consequently, this study is aimed at characterising the physicochemical and 
thermokinetic properties of Shankodi-Jangwa (SKJ) coal recently discovered in 
Nassarawa state, Nigeria. The results indicate that SKJ comprises 40.50% fixed carbon, 
43.34% volatile matter, and 2.36% sulphur with a higher heating value (HHV) of 27.37 
MJ kg–1. Based on this HHV, SKJ was classified as high-volatile B bituminous coal. 
Thermal analysis of SKJ under oxidative thermogravimetry (TG) at multiple heating rates 
revealed that SKJ is highly reactive and thermally degradable below 1000°C. Kinetic 
analysis using the Flynn-Wall-Ozawa model for conversions α = 0.05–0.90 revealed the 
activation energy to range from Ea = 113–259 kJ mol–1, with the frequency factor ranging 
from A = 2.9 × 1013–1.5 × 1023 min–1 and a range in R2 = 0.8536–0.9997; the average 
values of these ranges are Ea = 184 kJ mol–1, A = 9.2 × 1023 min–1 and R2 = 0.9420, 
respectively. The study highlighted fuel property data vital for modelling and designing 
future SKJ coal power generation. 
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alumina crucible from 35°C–1000°C at β = 10, 20, 30°C min–1 under an ultra-
pure oxygen (O2) purge gas flow rate of 20 ml min–1. Subsequently, the resulting 
thermograms were analysed using the Pyris 6 TGA software to determine 
oxidative temperature profiles of SKJ. Next, the parameters of activation energy, 
Ea, and frequency factor, A, were deduced using the Flynn-Wall-Ozawa kinetic 
model for conversion α = 0.05 to 0.90.  

2.2 Kinetic Model Theory 

The thermal decomposition of SKJ coal under combustion (oxidative) conditions 
can be represented by the general equation: 

   d
k T f

dt

   (1) 

where α represents the degree of conversion, t represents time, k(T) is the rate 
constant dependent on temperature, T is absolute temperature, and f(α) is the 
function of the reaction mechanism occurring during thermal degradation of the 
material. Consequently, the degree of conversion, α, can be expressed as:18,19 

i t

i

m m

m m








 (2) 

where mi represents the initial sample mass, mt is the sample mass at time t, and 
m∞ is the final sample mass at the end of the reaction. According to the Arrhenius 
equation, the temperature dependent rate constant, k(T), can be defined as: 

  exp aE
k T A

RT
   
 

 (3) 

where A is the frequency factor (min–1), Ea is activation energy (kJ mol–1), R is 
the universal gas constant (J mol–1 K–1) and T is absolute temperature (K), 
respectively. Consequently, the rate of sample degradation and the effect of the 
rate-dependent constant on the mechanism of reaction can be obtained by 
substituting Equation 3 into Equation 1 as given by: 

 exp ad E
A f

dt RT

    
 

 (4) 
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By considering and introducing the effect of the heating rate, β, defined as: 

dT

dt
   (5) 

The thermal degradation of SKJ coal sample can be represented by the equation: 

 exp ad A E
f

dt RT

 


   
 

 (6) 

After separation of the variables, Equation 6 can be expressed as: 

 
exp ad A E

dt
f RT


 

   
 

 (7) 

By integrating Equation 7, the conversion function, g(α), which describes the 
thermokinetic decomposition of the SKJ coal at a specific heating rate, can be 
expressed as: 

    00
exp

T
a

T

d A E
g dt

f RT

 
 

    
    (8) 

This is the fundamental equation for analysing the parameters of decomposition 
kinetics; activation energy, Ea, and the frequency factor of materials, A. By 
introducing the Doyle's approximation,20 the solution to Equation 8 can be 
deduced, thereby presenting the basis for the isoconversional Flynn-Wall-Ozawa 
kinetic model given by: 

 ln ln 5.331 1.052a aAE E

Rg RT


        

  
 (9) 

Hence, the kinetic parameters Ea and A can be deduced by plotting In (β) against 
(1/T). The Ea can be calculated from the slope –1.052 Ea/R (where R = 8.314 J 
mol–1 K–1), while A can be calculated from the intercept In [AR/Ea]. 
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The higher heating value (HHV) is the most important property for the 
classification (rank) and assessment of the potential of coals.21 The HHV for SKJ 
coal is 27.37 MJ kg–1, which is slightly higher than the value of 27.22 MJ kg–1 
that has been reported in literature3,23 but lower than other Nigerian coals such as 
Lafia-Obi (30.30 MJ kg–1), Enugu (32.90 MJ kg–1) and Okaba (29.70 MJ kg–1). 24 
In addition, based on HHV and VM,21 SKJ can be classified as high-volatile B 
bituminous agglomerating coal. 

3.2 Thermogravimetric (TG) Analysis 

Figure 1 presents the burning profile (oxidative thermal) of SKJ coal at different 
heating rates. The burning profile of coal is vital in assessing its reactivity, 
combustibility and suitability for combustion systems.25 The plots clearly 
displayed the reverse S – weight loss curves typically observed for thermally 
decomposing carbonaceous materials under non-isothermal conditions.26,27  

 
Figure 1: TG plots for SKJ Coal at different heating rates. 

The TG plots observably shifted to the right hand side (higher temperatures) due 
to the thermal-time lag which occurs during TGA at different heating rates. 
Consequently, the heat transfer and reaction time is limited at higher heating 
rates, causing the shift in TG curve and temperature profiles.28 Hence, the results 
demonstrate that the change in heating rate influenced the weight loss of SKJ 
during oxidative conditions. 
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The DTG plots for SKJ combustion in Figure 2 revealed the typical endothermic 
peaks for the derivative weight loss of decomposing materials during TGA.26,27 

 
Figure 2: DTG plots for SKJ coal at different heating rates. 

Similarly, the effect of heating rate was also observed in the DTG plots for SKJ 
coal. This indicates that the varying heating rate resulted in an increase in the size 
and orientation of the DTG plots, which highlights the influence of temperature 
on SKJ coal degradation. Furthermore, the plots also revealed two endothermic 
peaks for the degradation of SKJ at 10 and 20°C min–1 as was also reported for 
other Nigerian coals.25 However, the DTG plot at 30°C min–1 indicated two major 
peaks and one minor peak, which may indicate a higher rate of reactivity of SKJ.  

The weight loss peaks for SKJ coal from 30°C–200°C can be ascribed to drying 
(loss of moisture and mineral hydrates) during thermal degradation.29 The weight 
loss observed during the drying of SKJ coal ranged from 5.95%–6.65%, which is 
in good agreement with the determined moisture content (5.05%) for SKJ coal 
presented in Table 1. Moisture can significantly influence coal classification, 
processing and thermal efficiency during conversion.21 

The weight loss observed for SKJ from 200°C–600°C can be attributed to the 
devolatilisation of organic matter. The weight loss observed during this stage 
ranged from 85.95%–86.34%, which suggests that weight loss may not be due 
only to devolatilisation (as the loss of volatile matter, VM, was only 43.34%) but 
also to the presence of other components in the coal composition.  
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The combustibility of SKJ was evaluated from the peak decomposition 
temperature, Tmax, of the DTG plots. The Tmax is the temperature at which 
maximum weight loss occurs and denotes the ease of ignition, reactivity and coal 
rank; a lower Tmax indicates a higher rank and thus greater ease of burning or coal 
degradation.25,29,30 The Tmax for SKJ ranged from 387°C–400°C from 10°C–30°C 
min–1, which is similar to values of 384–451°C reported for Indonesian coals.31 
However, Sonibare and co-workers reported Tmax values of 445°C–500°C for 
lignite and sub-bituminous Nigerian coals,25 which confirms the higher 
bituminous rank of SKJ.  

3.3 Combustion Kinetic Analysis 

The FWO model was used to determine the activation energy, Ea, and frequency 
factor, A, of SKJ coal combustion. The Ea and A were obtained from the slope 
and intercept of the plot of In (β) against (1/T) at multiple heating rates. Figure 3 
presents the kinetic plots for SKJ combustion for conversions α = 0.05–0.90. 

 
Figure 3: Kinetic plots for SKJ coal combustion. 

The values for Ea and A for SKJ coal conversion are presented in Table 2. The Ea 
values ranged from 113.13–259.12 kJ mol–1, while A ranged from 2.89 × 1013 to 
1.49 × 1023 min–1 with correlation values of R2 = 0.8536–0.9997.  
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