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ABSTRACT: This work examined the tensile, thermal, morphology and swelling 
properties of unvulcanised and dynamically vulcanised recycled polypropylene 
(RPP)/chloroprene rubber (CR) blends at different blend ratios. The results indicated 
that the tensile strength and Young's modulus of both the unvulcanised and dynamically 
vulcanised RPP/CR blends were reduced. However, elongation at the breaking point 
increased with increasing CR content. In contrast, the dynamic vulcanisation enhanced 
the tensile properties, melting temperature (Tm), enthalpy (ΔHf) and crystallinity (Xb) in 
comparison with the unvulcanised RPP/CR blends. The swelling percentage of the 
dynamically vulcanised RPP/CR blends was lower than the unvulcanised blends due to 
the presence of crosslinks after the dynamic vulcanisation occurred.  

Keywords: Recycled polypropylene, chloroprene rubber, dynamic vulcanisation,  
tensile and thermal properties, swelling 
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Table 1: The formulations of unvulcanised and dynamically vulcanised of  
RPP/CR blends 

Materials 
Unvulcanised  

RPP/CR 
Dynamically vulcanised 

RPP/CR 
Recycled polypropylene (RPP) (php) 100, 85, 70, 55, 40 100, 85, 70, 55, 40 

Chloroprene rubber (CR) (php) 0, 15, 30, 45, 60 0, 15, 30, 45, 60 

ZnO (%)* – 5 

Stearic acid (%)* – 2 

TMTD (%)* – 2 

CBS (%)* – 2 

Sulfur (%)* – 1 

php: parts per hundreds of total polymer 
*curatives system based on weight of CR 

2.3 Compression Moulding of Blends 

Each of the RPP/CR blends were compressed into sheet form using a 
compression moulding machine, model GT 7014 with a temperature and pressure 
of 180°C and 170 kg cm–2, respectively. The blend samples were preheated for 8 
minutes and then compressed for 6 min. After that, the samples were 
subsequently cooled under pressure for 4 min. The samples were then cut into 
dumbbell shapes using a Wallace dumbbell cutter.  

2.4 Tensile Properties 

Tensile strength, Young's modulus and the elongation at break were measured 
using an Instron Tensile Machine Model 5569, according to ASTM D638. The 
gauge length and crosshead speed were 50 mm and 50 mm min–1, respectively. 
The tensile test was performed at 25°C ± 3°C. Five samples of each composition 
were tested, and the average values were recorded. 

2.5 Swelling Behaviour 

The swelling percentage of the specimens were measured according to ASTM 
D471. The dimensions of the specimens were 30 × 5 × 1.3 mm. First, the 
specimens were weighed (initial weight) using a Mettler balance. Then, the 
specimens were immersed in toluene at room temperature for 72 h. After that, the 
specimens were taken out from the toluene and wiped with tissue paper to 
remove excess toluene and then weighted again (swollen weight); the swelling 
percentage of the specimens was calculated using Equation 1: 
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the tensile strength of the dynamically vulcanised RPP/CR blends. Moreover, the 
improvement of the tensile strength was also due to the crosslinked rubber 
particles attaching to the RPP matrix, which increased the extent of deformation 
before failure. Van Dyke et al.14 claimed that the blends of dynamically 
vulcanised polyamide 12 (PA12)/chlorobutyl rubber (CIIR) with different 
curatives improved the tensile strength compared to unvulcanised blends. The 
same observation was also reported by Narathichat et al.15 in the dynamically 
cured natural rubber/PA12 blend system. 

 
Figure 1: Effect of blend ratios on tensile strength of unvulcanised and dynamically 

vulcanised RPP/CR blends. 

Figure 2 illustrates the effect of blend ratios on Young's modulus of the 
unvulcanised and dynamically vulcanised RPP/CR blends. It is apparent that 
Young's modulus of both blends decreased with increasing CR content due to a 
reduced stiffness of the blends. At similar blend ratios, the dynamically 
vulcanised RPP/CR blends exhibited a higher Young's modulus than the 
unvulcanised RPP/CR blends. This suggests the presence of crosslinks in the CR 
phase since there was an improved stiffness of the dynamically vulcanised 
RPP/CR blends. Accordingly, the Young's modulus is dependent on the crosslink 
density, and the increase in the crosslink density is reflected by the enhancement 
in the Young's modulus under dynamic vulcanisation.  
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Figure 2: Effect of blend ratios on Young's modulus of unvulcanised and dynamically 

vulcanised RPP/CR blends. 

Figure 3 shows the elongation at break of the unvulcanised and dynamically 
vulcanised RPP/CR blends with different blend ratios. It was observed that the 
elongation at break increased with the increasing CR content. Nakason et al.16 
claimed that the tendency towards recovery to the original shape of elongated 
samples is higher for the blends with a higher content of CR. Therefore, the 
dynamically vulcanised RPP/CR blends exhibited a higher elongation at the 
break in compared to the unvulcanised RPP/CR blends. The improvement of 
elongation at the break of the dynamically vulcanised blends was due to an 
improved dispersion of the CR particles in the RPP matrix. Dearmitt17 reported 
that the improved dispersion would help to prevent agglomeration and 
consequently to maintain a superior elongation at break. The dynamic 
vulcanisation of TPEs has been previously reported.18–21 
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Figure 3: Effect of blend ratios on elongation at break of unvulcanised and dynamically 
vulcanised RPP/CR blends. 

3.2 Swelling Properties 

Figure 4(a) shows the effect of blend ratios on the swelling percentage of 
unvulcanised and dynamically vulcanised RPP/CR blends at compositions of 
100/0, 70/30 and 40/60 in toluene for 72 h. The swelling percentage is an 
indicator of the degree of crosslinking. It can be observed that the swelling 
percentage of dynamically vulcanised RPP/CR blends was lower than the 
unvulcanised blends. This indicated that the resistance to chemical penetration of 
the dynamically vulcanised RPP/CR blends was higher compared to the 
unvulcanised RPP/CR blends. This is due to the presence of crosslinks in the 
dynamically vulcanised RPP/CR blends, which hindered the penetration of 
toluene into the RPP/CR blends. Anandhan et al.22 claimed that the swelling 
index of the dynamically vulcanised blends was less than the unvulcanised blends 
because crosslinks present in the rubber phase of the vulcanised blends limit the 
transport of solvent molecules into the blends. 

The equilibrium swelling percentage of RPP/CR blends is shown in Figure 4(b). 
The equilibrium swelling percentage of both unvulcanised and dynamically 
vulcanised RPP/CR blends increased with increasing CR content for all the 
compositions of the blends. The blends became less stiff and more permeable to 
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the toluene as the CR content increases within the blends. However, the 
dynamically vulcanised RPP/CR blends exhibited lower equilibrium swelling 
percentage compared to the unvulcanised blends. This is due to the presence of 
the crosslinks, which restricted the penetration of toluene in RPP/CR blends. 
Similar findings were reported by Ismail et al.,23 where they found that the 
swelling index of dynamically vulcanised PVCw/NBR blends were lower than 
unvulcanised PVCv/NBR and PVCw/NBR blends. This is because the blends 
become stiffer and less penetrable to chemicals as the crosslink density in 
dynamically vulcanised PVCw/NBR blends increased. 

 

 

Figure 4: (a) Swelling percentage; and (b) Equilibrium swelling percentage of 
unvulcanised and dynamically vulcanised RPP/CR blends at different blend 
ratios. 
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3.3 Morphology Study 

The SEM micrographs of the RPP/CR blends at compositions of 100/0, 70/30 
and 40/60 are shown in Figures 5, 6 and 7, respectively. The SEM micrographs 
of neat RPP show the homogeneous surfaces with a brittle nature, as shown in 
Figure 5. Figure 6 shows the tensile fractured surfaces of unvulcanised RPP/CR 
blends at a blend ratio of 70/30, which exhibited a large number of holes formed 
by the detachment of the CR particles from the RPP matrix due to poor interfacial 
interaction. Furthermore, the SEM micrographs of the unvulcanised RPP/CR 
blends at a blend ratio of 40/60 showed larger CR particles dispersed in the RPP 
matrix (Figure 7). This result indicates that poor interfacial adhesion between the 
RPP and CR and the agglomeration of CR particles occurs at higher contents of 
CR. In contrast, the SEM micrographs of the dynamically vulcanised RPP/CR 
blends at 70/30 and 40/60 are displayed in Figures 8 and 9, respectively. It can be 
observed that both of SEM micrographs for the dynamically vulcanised RPP/CR 
blends exhibited CR particles that are better dispersed in the RPP matrix 
compared to unvulcanised RPP/CR blends, as well as have fewer holes on the 
RPP surface. This is because the dynamic vulcanisation of TPEs caused the CR 
particles to be more uniformly dispersed in the RPP matrix and thus enhanced the 
tensile strength of the TPEs, as discussed in Section 3.1. Kumar et al.24 claimed 
that during dynamic vulcanisation, the crosslinked rubber becomes more finely 
and uniformly distributed in the plastic matrix. Martin et al.25 reported that the 
dynamic crosslink of the elastomer in molten thermoplastics leads to a very fine 
and homogeneous morphology, resulting in an improvement of the tensile 
properties. 

 
Figure 5: SEM micrograph of neat RPP. 
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Figure 6: SEM micrograph of unvulcanised RPP/CR (70/30) blend content. 

 

Figure 7: SEM micrograph of unvulcanised RPP/CR (40/60) blend. 
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Figure 8: SEM micrograph of dynamically vulcanised RPP/CR (70/30) blend. 

 
Figure 9: SEM micrograph of dynamically vulcanised RPP/CR (40/60) blend. 
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3.4 Differential Scanning Calorimetry (DSC) 

The DSC curves of unvulcanised and dynamically vulcanised RPP/CR blends at 
compositions of 100/0 and 40/60 are presented in Figure 10. Table 2 summarises 
the DSC data of unvulcanised and dynamically vulcanised RPP/CR blends at 
different blend ratios. In Table 2, it is shown that the values of ΔHf, and Xb for 
both the unvulcanised and dynamically vulcanised RPP/CR blends decreased 
with the increasing CR content. The inclusion of CR into the blends limits the 
crystallising tendency of the RPP and thereby reduced the ΔHf and Xb of the 
blends. Nevertheless, the dynamically vulcanised RPP/CR blends exhibited 
slightly higher values of Tm, ΔHf and Xb compared to the unvulcanised RPP/CR 
blends. This indicated that the formation of crosslinks in the dynamically 
vulcanised RPP/CR blends enhanced the melting and crystallisation behaviour. 
The crosslinked CR phase held the structure of the blends more firmly together 
and improved the crystallite stability, as well as raised the melting temperature 
compared to unvulcanised blends. A similar result was reported by Hernández et 
al.,26 who reported that the dynamic vulcanisation of PP/NR blends exhibited a 
higher ΔHf compared to unvulcanised and static vulcanised blends. They also 
claimed that when the blends are dynamically vulcanised, the rubber particle size 
decreased, and the crystallisation process was less hindered, which caused the 
enthalpy of fusion of the dynamically vulcanised blends to increase. 

 
Figure 10: Comparison of DSC curves between RPP, unvulcanised and dynamically 

vulcanised RPP/CR blends at 60 php of CR content. 
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