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Abstract: The design of chemical products that satisfies customer requirements 
commences with the identification of desirable properties for a specific application. 
Molecular design techniques have been traditionally used to find the products that meet 
the identified properties. Conventionally, product design based on properties is done based 
on the assumption that property prediction models are available for the target properties. 
However, in many design problems encountered in industry, such prediction models may 
not be readily available. In this paper, we have developed a systematic framework for 
the design of chemical products by targeting the attributes defined by customer even if 
there are no property prediction models available for target properties. In addition, a 
methodology has been developed for the understanding of the global interactions between 
properties and their impact on environmental and technical performance. Different kinds 
of chemometric techniques have been used to define the needs of the customer in terms of 
physical properties. In the next step, computer aided molecular design techniques have 
been integrated with the data driven methodologies to design the optimum products. To 
illustrate the applicability of the developed framework, a case study has been discussed 
to design environmentally benign chemical products to satisfy property requirements of a 
biofuel additive. This has been achieved in conjunction with the developed property models 
that represent consumer defined attributes of biofuel additives. 

Keywords: Molecular design, chemometric techniques, group contribution models, data 
driven techniques, product design
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1.	 INTRODUCTION

1.1	 Chemical Product Design

Chemical products consist of a very wide range of scopes and they can be generally 
categorised into three classes, namely basic chemical products, industrial products 
and consumer products. The first class is the basic chemical products, which 
usually consists of well-defined molecules and mixtures of molecules. Secondly, 
industrial products are those typically categorised by thermophysical and transport 
properties. Finally, consumer products are manufactured by basic chemical and 
industrial chemical products. Unlike other products, configured consumer chemical 
products are usually sold to the consumers. Though different in functionality and 
quantity produced, the procedure in designing these different classes of chemical 
products is similar.1

Due to the changes in chemical industry over the recent years, the design of chemical 
products has become more important and essential. Chemical product design is the 
process of choosing the right product to be made for a specific application.1 It can 
be defined as the identification of molecule/mixture that possesses properties which 
fulfils a set of desired customer requirements. Moggridge and Cussler proposed a 
general framework of chemical product design process.1 Figure 1 illustrates the 
four stages of chemical product design.

Figure 1: Chemical product design stages.

Based on the framework, the chemical product design consists of four stages. They 
are the needs, ideas, selections and manufacture. Chemical product design begins by 
identifying the desirable properties of the target chemical. This is required in order 
to satisfy a specific industry or the consumer's needs. It can be seen that the whole 
chemical product design process is driven and governed by the requirements of the 
customers. In many occasions, the customers' interests can be quantified in terms 
of product properties. Therefore, it is important to have a tool that systematically 
identifies the chemicals or blends with desirable properties.2
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1.2	 Property Based Design

In most cases, functionality in a chemical product is defined in terms of physical 
properties rather than the chemical structure of the product. Since customer 
requirements are the driving force for chemical product design, it is important 
to convert their qualitative requirements into quantitative product specification in 
order to design a chemical product.3 This can be done by computer aided molecular 
design (CAMD) techniques. CAMD techniques are important for chemical 
product design for their ability to design and estimate molecules with a given set 
of product target specifications.4 Therefore, these techniques are often used in 
the early stage of chemical product design for screening purpose. While utilising 
CAMD techniques in chemical product design problems, property models are used 
to estimate the properties of the product. These property models are computational 
tools developed to predict the molecular properties from structural descriptors, 
which are used to quantify molecular structure of a molecule. Some of the 
frequently used structural descriptors are chemical bonds and molecular geometry. 
However, most of the formulations for chemical product design problem involve 
highly non-ideal mixtures and thus, the property models are usually have not been 
developed yet.4 The common models that are available for prediction of controlled 
chemistry are the thermodynamic models. Therefore, those non-thermodynamic 
properties are necessary to be further investigated or must be correlated to the 
thermodynamic properties.

1.3	 Challenges and Motivation

Most of the current product design algorithms are based on the assumption that 
the property prediction models are available for the target properties. However, 
if the required property models are not available, the current available techniques 
are difficult to be used for the chemical product design problems. Therefore, it is 
necessary to develop a framework to solve product design problems by addressing 
the absence of property models. In this work, property models are generated by 
utilising experimental data for target properties where property prediction models 
are unavailable. The model development is based on the hypothesis that these 
properties can be represented as a function of other physical properties. Hence, 
the property model can be generated by identifying the correlation between the 
properties with other physical properties. 
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2.	 METHODOLOGY

2.1	 Proposed Framework

As mentioned earlier, the objective of this study is to develop a framework that 
integrates data-driven techniques with molecular design methodologies for 
optimal chemical product design. Through this, it will be possible to identify the 
optimal molecules with specific properties even if there are no models available 
to predict those properties. The developed integrated framework is divided into 
three interconnected phases, namely the problem formulation, statistical model 
development and molecular design.

2.1.1	 Problem formulation

In problem formulation, the objective of the chemical product design problem is 
defined. The sources of this objective can either be a brand new chemical product 
with high market demand or a requirement for updating an existing chemical 
product with better functionalities. For both cases, the satisfaction of the need is 
formulated as a problem. In the next step, it is required to understand and define 
the influential design target parameters in terms of measurable product properties 
(e.g., boiling point, melting point, flash point, surface tension, viscosity, etc.) that 
affect the main objective such that it satisfies the customer needs. 

Based on the targeted properties defined above, property models are required to 
generate and solve the defined objective. The most common property prediction 
models are based on group contributions (GC) techniques.5–7 These techniques 
consider a molecule as a collection of various molecular groups. The properties 
of the molecule can then be estimated as a summation of the contributions of the 
molecular groups and their frequency in the molecule. The property estimation 
model developed by using GC method can be represented by the following 
equation:7

X N C w M D z O Ef i i
i

j j
j

k k
k

= + +] g / / / 	 (1)

where f(X) is a function of the property X, w and z are binary coefficients depending 
on the levels of estimation, Ni, Mj, Ok are the number of occurrence of first, second 
and third-order group contribution correspondingly and Ci, Dj, Ek are contribution 
of first, second and third-order group subsequently. Second and third order 
molecular groups were developed as improvement to the first order molecular 
groups. By utilising these higher order molecular groups in GC methods, different 
functional groups and isomers can be distinguished and properties of molecules 
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which involve polyfunctional groups can be predicted.6,7 GC methods have been 
widely applied in estimating a number of thermodynamic properties of organic 
compounds.6,7 However, not every physical property/attribute has specific property 
prediction models available. For these properties/attributes, it is necessary to 
develop new models based on experimental data. However, development of new 
group contribution models is a time consuming and tedious task. Therefore, in 
this work, the focus is on developing a prediction model based on the underlying 
properties of the attributes. The method used to develop target property models 
will be discussed in the following phase.

2.1.2	 Statistical model development

In this stage, property models for properties which do not have available property 
models are developed. These physical properties can either be obtained from 
experimental data or estimated by utilising property prediction methods such as 
GC methods or TIs. These experimental data or predicted values are then used as 
the source for the development of the property model.

There are several strategies available develop a statistical model such as fitting 
regression models, factorial design, and analysis of variance (ANOVA), etc. 
Among all the strategies, a combination of factorial design technique and regression 
analysis has been chosen in this research methodology to evaluate the relationships 
between physical properties and attributes. The interactions between different 
properties are first addressed by utilising factorial designs. These interactions 
could have significant influence on the target attributes. Once the effect of different 
factors has been identified, the exact functional relationship between the properties 
and the attributes can then be developed by using regression analysis.

2.1.2.1	 Factorial design

An experiment that involves the study of two or more factors is known as a 
factorial design, with the simplest type of factorial designs involving only two 
factors.8 Factorial design technique appears to be very efficient for its possibility 
to systematically combine the levels being investigated for each complete trial 
or replication of the experiments.9,10 In order to develop a property model, it is 
important to identify factors or independent variables that affect the response of 
interest or dependent variable. By utilising factorial design, effects and influence 
of the independent factors on the output of the dependent variable can be studied 
and investigated. Generally, a two-factor factorial experiment design can be 
represented as Figure 2.
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Figure 2:  General arrangement for a two-factor factorial design.

Let yijk be the observed response with ith level of factor A (i = 1, 2, ..., a) and 
jth level of factor B (j = 1, 2, ..., b) for the kth replicate (k = 1, 2, ..., n). When 
the design factors are quantitative such as viscosity, pressure, density, etc., then a 
regression model representation of the two factorial experiments can be developed 
and written as:

x x x xy 0 1 1 2 2 12 1 2b b b b f= + + + +] ] ]g g g 	 (2)

where y is the response of interest, β0, β1, β2 and β12 are the parameters values to 
be determined, x1 represents factor A, x2 represents factor B, x1x2 represents the 
interaction between A and B, and ϵ is random error term for the regression model.

Equation 2 above would be an illustration for the concept of interaction between 
two factors.8 β12 represents the interaction coefficient between x1 (factor A) and x2 
(factor B). This interaction coefficient might be ignored if it is relatively small as 
compared to the main effect coefficients β1 and β2; hence, this shows that there is 
no significant interaction occurring between both factors. 

These concepts can be illustrated graphically by using a response surface plot 
and a contour plot for the specific model. The 3D response surface plot shown in 
Figure 3 illustrates a plane of y values created by various combinations of x1 and x2. 
On the other hand, Figure 4 shows the contour lines of constant response y in the 
x1 versus x2 plane. Notice that both example plots show a plane response surface 
and a contour plot containing parallel straight lines respectively. This indicates that 
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no interaction was contributed between x1 and x2 along with a small coefficient of 
β12. However, based on Figures 5 and 6, there is a significant interaction effect that 
twisted the plane in the response surface plot. This twisting effect of the response 
surface will cause the contour lines of constant response in the x1 versus x2 plane 
to be curved. Therefore, these two kinds of plot are very useful to represent an 
experiment model.  

Figure 3:  The response surface plot without interaction.

Figure 4:  The contour plot without interaction.
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Figure 5:  The response surface plot with interaction occurring.

Figure 6:  The contour plot with interaction occurring.

Once the underlying properties and their interactions have been identified, the next 
step is to use this information in developing the attribute-property relationship 
model. Based on the identified properties and the interactions, regression analysis 
can be used to generate the required model. Here, the attribute/property with no 
direct model is now represented in terms of other properties for which there are 
models. Therefore, the attribute can now be estimated from the molecular structure.
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2.1.2.2	 Model adequacy checking

The purpose in carrying out model adequacy checking is to ensure the robustness 
of the developed property models before utilising the model into molecular design 
problem. Decision is best indicated by the regression estimate for coefficient of 
determination (R2). As such, the high value of R2 will lead to a high precision.11 
Besides that, residual analysis is a very helpful technique for model adequacy 
checking. Residual which is defined as the difference between the actual value 
and the predicted value can be calculated by the developed model. In Figure 7, 
the residuals are plotted against their expected values and residuals should be 
normal distributed. The data points plotted in this plot should form an approximate 
straight line to indicate that the normal distribution is a good model for this data 
set, whereas data points who far away from the line is consider as an outlier.12 

Figure 7:  Normal probability plot of residuals.

After finalising the developed target properties model, the next step is to develop 
a molecular product design problem by using the target properties model develop 
together with other models that available in literatures.  

2.1.3	 Molecular design

The last phase of the methodology is to utilise the developed property model into 
a molecular product design problem to find the molecules with optimum target 
properties. The first step in solving the chemical product design problem is the 
identification of appropriate property models. For the case in which a suitable 
property model is not available for the property of interest, the methodology 
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discussed in the previous section is utilised to identify the respective property 
model. Once all the chemical product properties can be identified by utilising 
either the existing or developed property models, the next step is to identify the 
property target ranges for the chemical product properties. These target ranges 
define the upper and lower limit which the product properties will fall within. 
Once the property target ranges have been determined, possible molecular groups 
are selected as potential building blocks. In this step, possible types of atoms and 
bonds of the final product are selected. Next, structural constraints are identified 
to eliminate the combination of infeasible solution and ensure the formation of 
complete molecular structures. Finally, to generate the optimal molecular structure 
subjected to the property models and structural constraints, the chemical product 
design problem solved as an optimisation programming problem by solving the 
objective function.

In designing the molecules to serve the specific purpose, some constraints are 
needed to be imposed on the molecule. These constraints include structural and 
some specific properties depending on the process requirements.

The structural constraints that are to be imposed are:

1.	 The Free Bond Number of the final molecule is zero to ensure that number 
of bonds attached to each group is equal to its valance and hence eliminating 
the possibility of existence any free hanging bonds in the molecule.  
The mathematical expression for the Free Bond Number (FBN), which is  
the number of free bonds in each acyclic molecular string is shown in 
Equation 3:13

FBN n FBN b2 1g g g

g

N

g

N

11

gg

= - -
==

f p// 	 (3)

where FBNg is free bond number associated with group g.

2.	 The following expressions can be developed to ensure the existence of a 
meaningful molecule:

n 0g $ 	 (4)

In order to make sure that the designed molecules will meet the property 
targets identified in section 2.1.2, additional constraints must be imposed. In 
addition, it is important to make sure that the final structures will meet the 
constraints corresponding to environmental regulations as well.
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P m P Pm
lower

m m m
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m# #} } }_ _ _i i i	 (5)

where ψm is the function of the target property, and m that can be represented using 
a group contribution model.

With this input of process constraints, similar constraints for physical, environmental 
properties and preselected groups along with the structural constraints of:

N Nf max# ,	 n 0g $ 	 (6)

The number of first order groups that could be possibly present in the to-be designed 
molecules is maximised. The reason behind maximising these groups is to ensure 
that no potential molecule is left behind.

2.1.3.1	 Enumeration of higher order groups

In order to increase the accuracy of property-based molecular design techniques, 
the effects of higher order molecular groups are to be considered while designing 
molecules. Higher order groups give a better description of molecules and 
differentiation of structural isomers is possible using these groups. The following 
methodology has been developed to estimate the contributions of higher order 
groups based on work of Chemmangattuvalappil et al.:14 

Rule 1: Higher order groups can only be formed from complete molecular 
fragments. For instance, to form the higher order group CH (CH3) CH (CH3), 
there must be two CH and two (CH3) groups. It is not possible to consider a CH 
(CH3) group as a half higher order group.

Rule 2: If any of the higher order groups completely overlap some other higher 
order group, only the larger group must be chosen in order to prevent redundant 
description of the same molecular fragment. 

So, if (l: n) is the set of first order groups that are the building blocks of one higher 
order group, h, (nl: nn) is the number of those first order groups present in the 
molecule, η is the number of occurrences of one particular first order group in a 
selected higher order group, nh is the number of possible higher order groups from 
those first order groups, then:

:n Min
n n

h
l

l

n

n

h h
= e _ _i i o	 (7)
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nh must be rounded down to the nearest integer number according to Rule 1. 
Moreover, some higher order groups may share a part of the higher order groups. 
For instance, 2 OH and 1 CH group can form 2CHOH groups. Hence, the possibility 
of sharing of various combinations of available first order groups participating in 
the given higher order group is considered.

So, If (il: in) number groups of (l: n) groups are shared, for all combinations of 
(il: in) such that (il: in)∈(nl: nn) and (nl: nn) ≥ (ηl,ηn) , the number of possible higher 
order groups is given by:

:n Min n i n i
gh

l

l

n

gn n

h h
=

+ +f _ `i j p	 (8)

The groups with valance one alone is restricted from being shared. Highest value 
of ngh is considered to be the maximum number of higher order groups ng possible 
from given first order groups contributing to the presence of that higher order 
group in the molecule.

If Pj
M

j,mh} ` j is the property contribution from the higher order groups, it is 
calculated as:

P n Pj
M

j,mh h j,h
h 1

Nk
} =

=
` j / 	 (9)

The property for molecule i can now be estimated using Equation 10:15

P PPj
M

j,mh j
M

j,mf j
M

j,mh} } }= +` ` `j j j	 (10)

Since all the combinations of all first order groups whose maximum is taken as the 
limit are considered, no potential molecule is left behind. Introduction of higher 
order groups in initial molecular design model would lead to a nonlinear model 
and their introduction initially doesn't increase the accuracy of the model fairly. So, 
finding the maximum of these higher order groups from different combinations of 
first order groups which obey the structural constraints would serve the purpose of 
finding potential molecules for a given process performance. Hence, all possible 
combinations of the numbers [0,ng] and [0,nh] are generated subject to following 
constraint. 

FBN = 0	 (11)

The above method of generation enables the identification of structural isomers 
to some extent as the possibility of nonexistence of each higher order groups is 
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considered. The possible molecules are screened out by checking if the combination 
of all the groups satisfies all structural, property and process constraints. Rule 2 
indicates that a higher order group is not completely overlapped by any other higher 
order group. Hence, after screening out the molecules based on above constraints, 
an extra condition of whether any second order group is completely overlapped by 
another is checked before the final screening.

Since the molecule is designed by targeting the optimal properties, it can be ensured 
that the customer requirements have been addressed. Figure 8 illustrates the whole 
framework in a flow chart to summarise the developed approach. Therefore, this 
framework will be applied into a case study to illustrate the application of the 
novel approach.

3.	 CASE STUDY: DESIGN OF BIOFUEL ADDITIVES

3.1	 Introduction

The application and effectiveness of the developed framework is shown by solving 
a biofuel additives design problem. Biofuels are found to contain lower carbon 
footprints as compared with fossil fuels on the basis of equivalent amount of energy 
produced.16,17 This is a huge advantage of biofuels over fossil fuels as environmental 
issues are considered. However, there are a few major drawbacks for biofuels to be 
used in commercial applications. Although biofuels are well known for producing 
less harmful pollutant such as carbon monoxide (CO), particulate matter (PM) and 
hydrocarbon (HC), the emission of mono-nitrogen oxides (NOx) of biofuels are 
higher compared to conventional fuel.18 One of the approaches in reducing this 
drawback is by adding fuel additives.19 

3.2	 Parameters Affect NOx Emissions

The NOx emissions are harmful due to its contribution to a wide range of 
environmental effects such as the formation of acid rain and also the formation of 
greenhouse gases. Many researchers have suggested various possible factors that 
affect the NOx emission in biodiesel. According to Nettles-Anderson and Olsen,20 

viscosity of the biodiesel has a significant effect on the NOx emission. At low 
temperatures, an increase of biodiesel viscosity will increase the emission of NOx 
as the increase of viscosity will increase the NOx emission at low temperatures. 
Besides that, the density of biofuel will influence NOx emission. An increase in 
biofuel density will result in an increase of the NOx formation. Besides, the NOx 
concentration is also affected by the surface tension of the fuels. 
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Figure 8:  The methodology flow chart for chemical product design.



Journal of Physical Science, Vol. 28(Supp. 1), 1–24, 2017	 15

Diesel spray properties include the Sauter mean diameter (SMD) and droplet size 
distribution.21 The increase of SMD is affected by the increase of viscosity and 
surface tension of the fuel. During the premixed combustion phase, an increase of 
droplet size reduces the fraction of burning fuel that leads to the increment of the 
diffusion flame combustion duration, hence, the NOx concentration increases. Last 
but not least, the increase in cetane number (CN) of biodiesel will reduce the NOx 
formation. This is because ignition delay has been shortened and this reduces the 
combustion temperature along with the residence time.

3.3	 Biodiesel Additives Design

Based on the previous explanation, there are several fuel properties that could 
be controlled in order to produce a superior biodiesel additive. In this section, it 
is desired to design a biofuel additive that can be used to increase the biodiesel 
cetane number for NOx reduction. Besides that, other physical properties such as 
melting point, boiling point and flash point have been included in the design of 
biodiesel additives as well. These properties are to ensure the additive designed 
is in a liquid state where it will be suitable to mix with the biofuel itself. Flash 
point estimation is to determine the stability of the biofuel additive. Property and 
structural constraints were set to determine solutions that lie within the feasible 
region. The following subsection will discuss the process of designing the additives 
molecules by applying the framework developed in section 2.

3.3.1	 Attributes model development

CN is a widely used fuel quality parameter. It is a dimensionless descriptor that 
measures the ignition quality of a fuel in a diesel engine.22 However, there is no 
linear property model available to predict the cetane number from the chemical 
structure. As a hypothesis, NOx emissions have strong relationship between 
cetane number and it can be represented as an empirical function of two physical 
properties which is viscosity and molar volume. Hence, data-driven approach has 
been used to correlate the viscosity and molar volume to generate a property model 
equation for cetane number. 

As mentioned earlier, factorial design technique was performed to determine the 
effect and interactions between two or more factors on the respond of interest, 
whereby viscosity and molar volume are the factors that influenced the cetane 
number in this case.

CN f ,Vmn= _ i	 (12)
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The property model of cetane number developed by using factorial design and 
linear regression analysis can be represented as shown in Equation 13:

20.2075 0.224983 0.341760 0.00179108CN V Vm m#n n=- + + - _ i	 (13)

where μ is the viscosity and Vm is the molar volume.

The coefficient of determination (R2) obtained based on 115 data points is 90.91%. 
In addition, from Figure 11, it can be deduced that the data follow normal 
distribution. A response surface (Figure 9) and a contour plot (Figure 10) have 
been plotted based on the predicted property model of cetane number to represent 
the interaction between viscosity and molar volume. The interaction effect in this 
case is not very strong.

Figure 9:  The response surface of cetane number.

Figure 10:  The contour plot of cetane number.
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Figure 11:  Comparison of actual CN and calculated CN.

Figure 12:  Normal probability plot of residuals obtained from statistical 
analysis software.

By referring to Figure 11, almost all observation data fall on the best fit line. On 
the other hand, Figure 12 shows the normal probability plot of cetane number. The 
plot of the data points is approximately a straight line. This target property model 
is utilised in the following steps on molecular design to develop additives with 
high cetane number.
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3.3.2	 Additives property estimation

As property models developed by using GC methods are available for boiling 
point, melting point, viscosity, molar volume and flash point, these properties are 
estimated by using the existing property prediction models. Below are the list of 
property models available in literatures and these models will cooperated in the 
molecular design problem section:

Viscosity (μ): Dynamic viscosity estimated at 300K, only first order group 
contributions are considered.23

ln n n n n11 2 2 3 3 n nfn n n n n= + + + +_ _i i/ 	 (14)

where n1 to nn is the number of first groups, and μ1 to μn is the first order group 
contributions values.

Molar Volume (Vm): Saturated liquid molar volume estimated at 298 K, in which 
only first order group contributions are considered.24

V d n V n V n V n V1 1 2 2 3 3m m m m n mnf- = + + + +_ i/ 	 (15)

Where the d value is 0.01211 m3 kmol–1, n1 to nn is the number of first groups, and 
Vm1 to Vmn is the first order group contributions values. 

Normal melting point (Tm): Normal melting point temperature (Tm, K), only first 
order group contribution are considered.7 

Exp T T n T n T n T n T10 1 2 2 3 3m m m m m n mnf= + + + +` _j i/ 	 (16)

where the value of Tm0 is 147.450 K, n1 to nn is the number of first groups, and Tm1 
to Tmn is the first order group contributions values.

Normal boiling point (Tb): Normal boiling point temperature (Tb, K), only first 
order group contribution are considered.7 

Exp T T n T n T n T n T10 1 2 2 3 3b b b b b n bnf= + + + +` _j i/ 	 (17)

where value Tb0 is 222.543 K, n1 to nn is the number of first groups, and Tb1 until 
Tbn is the first order group contributions values.
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Flash point (Tf):25

4.656 0.844 0.234 10T T T3 2
f b b#= + - - ` j	 (18)

where both flash point (Tf) and boiling point (Tb) are in unit Kelvin (K).

Molecular Weight (M):

M n M n M n M n M1 1 2 2 3 3 n nf= + + + +_ i/ 	 (19)

where n1 to nn is the number of first groups, and M1 to Mn is the molecular weight 
for respective group contribution.

3.3.3	 Molecular design

Once the property models for all the properties are determined, the property target 
ranges for each of the property are identified as shown in Table 1.

Table 1:  Constraints set to solve molecular design problem.

Property Constraints

Viscosity (µ) µ>0
Molar volume (Vm) Vm>0
Normal melting point (Tm) 100K<Tb<260K
Normal boiling point (Tb) 450K<Tb<600K
Flash point (Tf) Tf>350K

For the design of biofuel additives with maximum cetane number, 5 molecular 
groups have been considered as the building blocks, which are CH3, CH2, CH, C 
and OH. These molecular groups and their respective contributions for different 
properties are shown in Table 2, with various objectives stated previously which are 
Equations 13–19 together with their constraints to solve this additives molecular 
design. 

Table 2:  Group contributions values.

nn Group Viscosity, ƞn Molar volume, Vmn Melting point, Tmn Boiling point, Tbn

n1 CH3 –1.0278 0.02614 0.6953 0.8491
n2 CH2 0.2125 0.01641 0.2515 0.7141
n3 CH 1.318 0.00711 –0.373 0.2925
n4 C 2.8147 –0.0038 0.0256 –0.0671
n5 OH 1.3057 0.00551 2.7888 2.567
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Together with structural constraints, the objective's function is solved to obtain 
the optimal product. Multiple solutions are generated using integer cuts. The 
computational results shown below are the potential molecular structure of the 
biofuel additives with their estimated properties.

Table 3: Potential molecular structure of biofuel additives.

No MS CN V MV MP BP FP MW

1 C13H28O 60.57 9.86 242.40 258.67 530.35 386.45 200.13

2 C12H26O 55.59 7.97 225.99 252.11 515.18 377.36 186.12

3 C11H24O 50.45 6.45 209.58 245.24 498.91 367.49 172.11

4 C10H22O 45.18 5.21 193.17 238.04 481.35 356.70 158.10

5 C9H20O 39.41 5.52 175.90 241.23 477.71 354.44 144.09
MS = Molecular structure, CN = cetane number, V = Viscoscity (cP), MV = Molar volume (cm3/mol),  
MP = Melting point (K), BP = Boiling point (K), FP = Flash point (K), MW = Molecular weight.

In Table 3, the estimated cetane number of potential molecular structure was 
arranged descending from the top. The first molecular structure has the highest 
cetane number and this molecule also exists in the reality namely 11-methyl-1-
dodecanol. Figure 13 shows the molecular structure of 11-methyl-1-dodecanol:

Figure 13:  Molecular structure of 11-methyl-1-dodecanol.

The list of its physical properties obtained from RSC Chemical Database and the 
predicted physical properties were shown in Table 4 below.

Table 4:  Comparison between physical properties from different sources.

Physical properties Predicted values Database values

Molecular formula C13H28O C13H28O

Average mass 200.13 200.36

Melting point (°C) –14 –

Boiling point (°C) 257 260.8

Flash point (°C) 113 105.5

Cetane number 60.57 –

Viscosity (cP) 9.86 –

Molar volume (cm3/mol) 242.4 241
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Based on the comparison between the estimated data and the database obtained, it 
can be concluded that the estimation method gives the almost accurate figure with 
slight deviation in the results. Besides that, based on the overall set of solutions 
obtained, it can be assumed that a biodiesel additive is mainly made up from 
alcohol components.

4.	 CONCLUSION

In this work, a novel methodology has been developed for property-based product 
design when the property prediction models for some for the target properties 
are unavailable. This methodology effectively combined experimental data and 
property prediction models to develop new models. The hypothesis behind the 
developed method is that different consumer attributes can be represented as a 
function of physical properties for which there are models. The factorial design 
technique has been used to estimate the relationships between properties and to 
determine the underlying interactions between more than two factors with the target 
property. The proposed methodology has been applied on the design of a biofuel 
additive. In this design, a property model based on physical properties has been 
developed for cetane number and applied into a molecular design problem for the 
additive design. The developed model can be used in molecular design problem to 
estimate properties or attributes which cannot be predicted by property prediction 
methods. In addition, the benefit of the developed methodology can be applied 
in different scenarios and the property model can be easily developed by using 
factorial design or other statistical analysis method provided the experimental data 
of that specific property are available.  

The current work can be further extended and improved by including mixture 
design techniques in the design chemical products. By doing this, it will be 
possible to accurately track the effect of additives on the products rather than 
relying on predefined target properties. Another important issue to be addressed in 
future is the interaction between the attributes themselves. The interaction between 
attributes using multivariate statistical analysis must be developed in future work 
in the area of chemical product design.
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6.	 NOMENCLATURE

ƞ = Number of occurrences of first order groups
μ = Viscosity
GC = Group contribution
M = Molecular weight
Tb = Boiling point
Tb0 = Adjustable parameter for boiling point
Tm = Melting point
Tm0 = Adjustable parameter for melting point
Tf = Flash point	
K = Constant
P = Target property
Ni = Number of occurrence of first order group of type-i
Mj = Number of occurrence of second order group of type-j
Ok = Number of occurrence of third order group of type-k
Ci = Contribution of the first order group of type-i
Dj = Contribution of the second order group of type-j
Ek = Contribution of the third order group of type-k
a, b, c, d, e, f = Correlation constants
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