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ABSTRACT: In this research, the aluminate spinel type materials, MAl2O4, are 
synthesised by solution combustion synthesis (SCS) method to investigate the effect of the 
element (M = Ca and Ba) on their structural, mainly crystallinity and optical properties. 
The characterisations are examined by X-ray diffraction (XRD), Fourier transform 
infrared spectroscopy (FT-IR) and UV-visible diffuse reflectance spectroscopy (UV-DRS). 
The XRD and FT-IR results showed the formation of the single-phase spinel structure of 
CaAl2O4 and BaAl2O4. The band gap energy was investigated using the Tauc method, and 
the obtained values were 3.93 eV and 3.77 eV for CaAl2O4 and BaAl2O4, respectively. The 
results showed a good agreement with the data as reported in the literature.
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1.	 INTRODUCTION

Nanomaterials semiconductor-based photocatalysis have attracted attention, due 
to the absorbing quality and consequently, the use of visible light (to directly 
convert the solar energy), allowing environmental remediation to be implemented 
and solar fuels to be synthesised. 
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Several materials of semiconductors have been tested in photocatalytic processes.1–6 
The spinel-type oxides with the general formula MAl2O4, with M representing a 
divalent metal ion that has attracted considerable attention for diverse applications 
owing to its chemical stability, high mechanical resistance, large surface area and 
low surface acidity.7,8 These unusual properties of spinel materials can be used in 
various areas of advanced technology. For example, it can be used in the military 
field to make missile domes, transparent armour, thermal camera windows and 
riflescope. It can also be used to make catalysts, luxury jewellery and horology, 
replacing sapphire and glass.9–11 Researches revealed that the structural and optical 
properties of spinel oxides nanostructures can be controlled accurately by adjusting 
the chemical composition of the sample as well as changing the preparation 
method.12,13 

Among the spinel-type structure compounds, aluminates, such as CaAl2O4 and 
BaAl2O4, seem to be good compounds to construct the hydrogen production 
catalysts.14,15 These aluminates have high thermal and chemical stability, cation/
anion vacancies and interesting luminescent properties, which can be used like 
refractory materials, capacitors, energy storage and recently they have been tested 
as catalysts due to their ability to generate hole/electron pairs during the oxidation/
reduction reactions on the surface under light irradiation conditions.16–18

Recent research shows that the spinel aluminate (MAl2O4) nanopowders have 
astounding uses in several fields of applications. For the M element, calcium (Ca) 
and barium (Ba) are among the potential materials for various applications due to 
their flexibility, abundance and excellent electromagnetic performance.

Aluminium is a low-cost metal with high abundance, low toxicity and multiple 
valence bands. Moreover, aluminate has a high melting point (2135°C), low 
density (3.58 g/cm3), excellent strength at extremely high temperatures and good 
resistance against chemical attacks.

In this work, we report the synthesis of MAl2O4 (M = Ca, Ba) spinel nanoparticles 
using the solution combustion synthesis (SCS) method. The characterisation of the 
prepared products is carried out using X-ray diffraction (XRD), Fourier transform 
infrared spectroscopy (FT-IR) and UV-visible diffuse reflectance spectroscopy 
(UV-DRS).
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2.	 EXPERIMENTAL

2.1	 Materials

The SCS is considered as an efficient, simple and economical synthetic method. 
It does not require any acid or base to hydrolyse the corresponding salts, and the 
steps of washing and filtration can be eliminated, which saves energy and time. 
The precursors used for the preparation of CaAl2O4 and BaAl2O4 were aluminium 
nitrate [Al(NO3)3.9H2O (Sigma Aldrich, purity 99.99%)], calcium [Ca(NO3)2.4H2O 
(Sigma Aldrich, purity 99.00%)], barium [Ba(NO3)2 (Sigma Aldrich, purity 
99.00%)] and urea (CH4N2O) as the complexing agent that was very effective for 
the synthesis of our samples. All chemical reagents used were purchased from 
Sigma Aldrich (Darmstadt, Germany). 

2.2	 Sample Preparation and Characterisation Techniques

CaAl2O4 and BaAl2O4 were synthesised by SCS. We dissolved in 100 ml of 
distilled water, 10 g of Al(NO3)3.9H2O with 3.15 g of Ca(NO3)2.4H2O and 3.48 g of 
Ba(NO3)2, and 5 g of urea (CH4N2O) for both mixtures. The homogeneous solution 
obtained was placed under thermal agitation at 80°C, and after two h, a liquid 
was obtained. The formation of oxides (CaAl2O4 and BaAl2O4) by the combustion 
process is represented by the following chemical reactions:

6Al(NO3)3 + 3Ba(NO3)2 + 20NH2CONH2 → 3BaAl2O4 + 20CO2 + 32N2 + 40H2O

6Al(NO3)3 + 3Ca(NO3)2 + 20NH2CONH2 → 3CaAl2O4 + 20CO2 + 32N2 + 40H2O

To remove residual water, the gel was placed in an oven for 24 h at a temperature 
of 100°C. Finally, the as-synthesised powders were calcined in air at 900°C for 
4 h. The solution combustion method was used to prepare the spinel type oxides 
(MAl2O4, M = Ca, Ba) in several steps as shown in Figure 1.
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Figure 1:  Flow chart for the synthesis of MAl2O4 powder by SCS method. 

The effects of the element (M = Ca, Ba) on the structure such as crystallinity and 
optical properties of MAl2O4 were investigated by XRD, UV-DRS, and FT-IR.

3.	 RESULTS AND DISCUSSION

3.1	 XRD Analysis

The XRD diagram was obtained using a PHILIPS PW 1800 powder diffractometer 
at the Synthesis and Catalysis Laboratory (University of Tiaret, Algeria). The 
radiations were used with a wavelength λ = 1.54056 A˚ produced by a copper 
anticathode. The interval explored in 2θ varied between 10° and 90° with a step 
of 0.02°. 

Figures 2 and 3 show the XRD pattern of the CaAl2O4 and BaAl2O4 powders, 
respectively. We observed the presence of several well-defined lines. All the peaks 
correspond to the spinel phase of the CaAl2O4 and BaAl2O4 and are indexed in 
the base of the hexagonal crystal structure including the space group P63 N° 173, 
ICSD (Inorganic Crystal Structure Database).17
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The presence of diffraction peaks at 2q values, approximately equal to 19.00°, 
21.95°, 23.95°, 26.98°, 30.14°, 31.40°, 33.34°, 35.70°, 37.44°, 41.11°, 42.30°, 
44.76°, 74.42°, and 49.62° indexed to (112), (020), (211), (122), (220), (301), 
(311), (303), (313), (232), (323), (412), (420), and (414) planes for CaAl2O4 and 
19.66°, 20.26°, 22.15°, 28.38°, 34.41°, 35.94°, 40.25°, 41.18°, 45.18°, 46.03°, 
53.72°, 54.71°, 58.00°, 58.71°, 61.63°, 69.85°, 72.53°, 74.43°, 76.83°, 79.63°, and 
87.98° indexed to (100), (002), (101), (102), (110), (111), (112), (004), (202), 
(104), (210), (114), (212), (204), (300), (214), (220), (116), (304), (312), and (216) 
planes for BaAl2O4 were confirmed by the JCPDS card No. 2002888 and JCPDS 
card No. 1010630, respectively.

Figure 2:	 XRD patterns of CaAl2O4 powder compared with JCPDS PDF Card  
No. 2002888.

Figure 3:	 XRD patterns of BaAl2O4 powder compared with JCPDS PDF Card  
No. 1010630.
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From the measurement XRD data we can calculate the crystallite size, the lattice 
constant and the cell volume.

 To calculate the lattice parameter (a), the following expression is used:

 
                   a 2 sin

(h k l )2 2 2

i
m=

+ +
                                                                                  (1)

where λ is X-ray wavelength, hkl represents the Miller indices and θ denotes the 
diffraction angle corresponding to the hkl plane.

The unit volume (V) of the prepared aluminate spinels is calculated using the 
following expression:

                  V
2

3
a c
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The crystallite size (D) of the samples is determined by the following Debye 
Scherer’s equation:19,20 

                  D
cos

k

b i
m=                                                                                         (3)

where k shows the crystallite shape factor, β is the half width maximum, and θ 
illustrates the Bragg’s angle.

The results obtained for the lattice parameter (a) gave the crystallite size (D) and 
the cell volume (V) for both samples as listed in Table 1.

Table 1:	 Lattice constant (a), cell volume (V) and crystallite size (D) for both 
structures (CaAl2O4, BaAl2O4).

Sample
a = b(A˚) c (A˚) V(A˚3) D (nm)

Exp Th1,22 Exp Th21,22

CaAl2O4 08.71 08.70 8.09 8.71 530.45 26.0

BaAl2O4 10.42 10.45 8.78 8.78 825.58 34.6

Note: b and c = lattice parameter, Exp = experimental, Th = theoretical

The computations indicated the value of crystallite size, the cell volume, and the 
lattice constant that increased with the M element substitution. The lattice constant 
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enhancement is due to the difference in the ionic radii of both Ca and Ba. The 
cell volume and lattice constant rise is due to the inter-atomic distance among the 
particles increases.

3.2	 FT-IR Spectroscopy Analysis

This analysis was performed to follow the chemical evolution of the powder during 
preparation, by detecting each atomic bond created or disappeared. The FT-IR 
spectra (400–4000 cm−1) obtained for spinel powders (CaAl2O4 and BaAl2O4) are 
illustrated in Figures 4 and 5. 

Figure 4:	 FT-IR spectra of CaAl2O4 powder synthesised via SCS method and calcined at 
900°C for 4 h.

Figure 5:	 FT-IR spectra of BaAl2O4 powder synthesised via SCS method and calcined at 
900°C for 4 h.
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Both samples contain common absorption bands around 3460, 1430, and 430 cm−1. 
The broad bands near 3460 cm−1 are attributed to O–H stretching vibrational and 
bending vibrational modes of absorbed water molecules.23 

Some infrared (IR) investigations of aluminate spinels observed are due to water 
absorption peaks and express that the high surface area of these materials would 
result in rapid adsorption of water from the atmosphere during pellet compression 
and IR measurements.23,24 

Additionally, the band at 1430 cm−1 is approved to the asymmetric stretching 
vibrations of AlO4 for both samples. In the FT-IR spectrum of Figures 4 and 5, 
the bands present in the range 400–500 cm−1 correspond to sites of the Ca and Ba, 
respectively. These bands are frequently reported in this range for similar spinel 
aluminate.25,26

3.3	 UV-DRS Analysis

UV-vis absorbance spectra for both structure CaAl2O4 and BaAl2O4 are shown in 
Figures 6 and 7, where it is observed that the materials could efficiently absorb 
energy below 310 nm, allowing them to be considered UV activated photocatalysts. 
Additionally, it is possible to observe an absorption peak between 350 and 450 nm 
for CaAl2O4 and BaAl2O4.

Figure 6:	 Absorbance plots of CaAl2O4 powder synthesised via SCS method and calcined 
at 900°C for 4 h.
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Figure 7:	 Absorbance plots of BaAl2O4 powder synthesised via SCS method and calcined 
at 900°C for 4 h.

The experimental band-gap values are evaluated from Tauc’s graphs by 
extrapolating the linear portion of (αhυ)2 for the band gap versus the photon 
energy:27,28

(αhυ)n = A (hυ – Eg)                                                                               (4)

where hυ is the light energy, A is a constant, Eg is the band gap energy,  
n = 1/2 for direct band gap.

Figures 8 and 9 display the curves of (αhυ)2 versus hυ for BaAl2O4 and CaAl2O4 
components synthesised. From these figures, the calculated band gap for CaAl2O4 
and BaAl2O4 are 3.93 eV and 3.77 eV, respectively. These values can be compared 
with the band gap values cited in the literature.29 This change in the value of the 
optical band gap (Eg) depends on several factors, such as the type of cation (Ca, Ba) 
introduced in the structure, preparation conditions, lattices train, and size effect.
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Figure 8:	 Tauc’s plots of CaAl2O4 powder synthesised via SCS method and calcined at 
900°C for 4 h.

Figure 9:	 Tauc’s plots of BaAl2O4 powder synthesised via SCS method and calcined at 
900°C for 4 h.

4.	 CONCLUSION

The nanopowders of the aluminate-based spinels (MAl2O4, M = Ca, Ba) synthesised 
in this work were successfully obtained by SCS method. XRD results proved that 
the spinel phase was for both samples with no secondary phase. An important 
difference in the lattice parameter (a), the cell volume (V) and the crystalline 
size (D) was observed. The formation of a spinel structure was confirmed by 
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the FT-IR spectroscopy absorption bands in the 400–500 cm−1 frequency range. 
The change in the band gap values determined by Tauc relation, elucidated the 
absorption wavelength variation of spinel aluminates according to the M element. 
Based on the investigations of all properties, it is concluded that the synthesised 
spinel aluminates are efficient constituents used as catalysts. Moreover, the SCS 
method can be considered as a very effective and useful technique to synthesise 
other spinel-type oxides aluminate nanopowders with good structural and optical 
properties. 
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