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ABSTRACT: Random lasing from a solid-state gain medium prepared on photonic 
crystal fibre (PCF) is observed for the first time. Vertically aligned ZnO microrods were 
prepared on PCF using a simple technique of chemical bath deposition (CBD). A low 
lasing threshold of 12.2 mJ/cm2 was observed in sample with longer zinc oxide (ZnO) 
rod length. The variation in morphology and population density did not affect the lasing 
threshold significantly. Further investigation of the effect of fiber length revealed that a 
shorter fiber had a lower threshold and showed quenching of the spontaneous emission 
revealing better lasing output. Simulations based on the morphology of the gain medium 
revealed light confinement in the structure, validating the origin of the lasing emission. 
Overall, this study shows the potential of utilising optical fiber as random lasers with a 
sustainable solid state gain medium.
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1.	 INTRODUCTION

Optical gain and multiple scattering of light produced by random-structured 
media set the basis for a range of phenomena, including amplified spontaneous 
emission and random lasing.1–3 A random laser works differently from a traditional 
laser such that feedback for amplification is achieved by disorder-induced 
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scattering. As such, having enough photons to participate in the scattering event 
and amplify (by means of a gain medium) is crucial to induce lasing. However, 
random lasing is an open cavity laser where achieving a low threshold has always 
been an ongoing problem. Therefore, vast amount of research was focused in 
designing a random laser that can achieve low threshold, compact and compatible 
with different applications. Various methods have been proposed to reduce the 
threshold in these zinc oxide (ZnO) based random lasers such as by optimising 
the surface morphology of ZnO nanorods, optimising the annealing conditions 
in ZnO nanorods, using a high concentration of ZnCdSeS/ZnS alloyed quantum 
dot-doped polymer-dispersed liquid crystals, forming defect pits in thin films, 
coupling with Fabry-Perot resonance modes induced in nanocolumns, utilising 
excitons, enhancing optical confinement formed by tapered nanowires and 
fluorescence resonance energy transfer coupled with light scattering.4–12 However, 
all the above methods refer to growth or synthesis of ZnO on substrates that cannot 
be integrated with current applications such as fibre-based sensing system. In this 
work, we wish to highlight the possibility of utilising optical fibres as potential 
random lasers that can reduce the challenge of integrating random lasers within an 
optical or electrical system. 

Random lasing emission from photonic crystal fibre (PCF) has been a topic of 
interest lately for a range of applications such as optofluidic sensing, speckle-free 
imaging and ultra-sensitive biosensing.13–19 These random lasers use dyes as the 
gain medium to typically produce a broad lasing spectral width between 10 nm to 
30 nm—which is comparable to fluorescence-based applications and are subject 
to degradation of the laser dye. Non-PCF based random lasers using a solid-
state gain medium have shown able to provide narrow emission lines.20–22 Hence, 
degradation issues may be eliminated by employing a solid-state gain medium.

In this paper, we demonstrate random lasing with narrow spectral width from 
ZnO microstructures prepared on PCF by a simple technique of chemical bath 
deposition (CBD). Changes in lasing properties were compared between two 
different fibre lengths. In addition, structural and morphological characteristics of 
the gain medium were also analysed. Further investigation on light confinement 
based on actual field emission scanning electron microscopy (FE-SEM) images of 
the samples were done to evaluate structural effects affecting light propagation. 
Results suggest the possibility of developing PCF random laser devices with ZnO 
structures as the gain medium.
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2.	 EXPERIMENTAL 

The PCF used in our experiment is specially designed by Flexilicate Sdn. Bhd. 
using a conventional stack-and-draw method. The fiber preform is drawn into 
around 2 mm diameter canes. The 2 mm cane is then re-drawn into standard fibre 
with outer diameter of 125 μm. The PCF created is illustrated in Figure 1(a). 
The gain medium (ZnO structures) was prepared by two-step CBD. First, a 100 
nm thick ZnO seed layer was deposited on the outer PCF by radio frequency 
magnetron sputtering. Constant power and argon gas flow rate were at 150 W and 
15 sccm at room temperature, respectively. The working pressure in the growth 
chamber is 4.63 × 10−3 Torr. Then, aqueous solutions of 0.05 M Zinc Nitrate 
[Zn(NO3)2.6H2O] and 0.05 M Hexamethylenetetramine (C6H12N4) were prepared. 
Each solution was stirred separately for 30 min and then combined before stirring 
for another 15 min, then poured into a glass bottle. Two sections of PCF, 3 cm and 
6 cm long, were taped on a glass slide for support and then was immersed into the 
solution. The bottle was tightly sealed and then placed in an oven for 4 h at 96°C. 
The samples were labeled Sample 1 (short PCF) and Sample 2 (long PCF). The 
same process was repeated one more time but only with short PCF and the sample 
was labelled Sample 3. For clarity, fibres that were deposited with just ZnO seed 
layer was also tested for lasing emission. 

The morphology was investigated by FE-SEM (Nova Nano SEM 450, FEI, Japan) 
and evaluated using ImageJ software. Confirmation of elements from the sample 
were obtained from energy-dispersive X-ray spectroscopy (EDX) located within 
the FE-SEM. Random lasing measurements were performed using a custom-
built micro-photoluminescence (PL) system with a Nd:YAG pulsed laser source 
operating at 355 nm, 1 KHz rep rate and 350 ps pulse width. The PCF were fixed 
on a translational stage with one end free standing such that the portion of fibre 
that is under excitation was surrounded by air. The excitation light was focused 
on the samples through an objective lens (10#) with a spot size of about 50 μm. 
The lasing emission was recorded by a spectrometer (JY iHR320) equipped 
with a liquid-nitrogen cooled charge-coupled device (CCD) array detector. 
All measurements were performed at room temperature and is depicted in  
Figure 1(b). To estimate light propagation in the structure, a finite-element approach 
was utilised using a commercial solver software: COMSOL Multiphysics™.  
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Figure 1: (a) Structure of the PCF, (b) The PL setup for random lasing measurement: The 
pump light was focused using a 10× objective onto free standing fibre placed on 
a translational stage. 

3.	 RESULTS AND DISCUSSION

Top view of the ZnO microstructures prepared on PCF is shown in Figure 2. The 
seed layer can be seen at the bottom of the inset in Figure 2(a) and Figure 2(d) 
where it was deposited onto the PCF prior to CBD. The seed layer aids the growth 
of vertical rods. Figures 2(a) and Figure 2(b) were from Sample 1 whereby the 
inset in Figure 2(a) shows the cross section of ZnO revealing an average height 
of 2.81 m and average rod diameter of 195 nm. A zoomed-out image of the fiber 
depicted by Figure 2(b) reveals a clustered and packed ZnO structures on a surface 
of the outer fibre. Figure 2(c) shows a more even distribution of the ZnO structures 
which is obtained from Sample 3. A closeup of Sample 3 reveals ZnO microrods 
with average rod diameter and height of 160 nm and 2.17 m, respectively.  
Sample 1 has a more clustered area of growth and Sample 3 has a more uniform 
area of growth. Small difference in the size and distribution is expected in CBD 
synthesis technique.23 The effect that this has on the lasing capabilities are 
discussed next. 
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. Figure 2: FE-SEM images of the gain medium, ZnO microstructures, prepared on optical 
fibres where (a) is top view image at 100k magnification with inset showing 
the cross section of the microrods for Sample 1, (b) is top view of the fiber for  
Sample 1, (c) top view of fibre for Sample 2 and (d) top view of the 
microstructures with inset showing the cross section of the microrods for 
Sample 2.

Elements from the sample were confirmed by EDX measurements and the 
percentage of elements are summarised in Table 1. Majority of elements are Zn 
and O elements. Small amounts of carbon (C) and nitrogen (N) are also detected 
which is a byproduct of the synthesis. The chemical equation governing the 
synthesis is as follows:

N 3Zn(NO ) .6H O 3ZnO s 14NH 12CO 9H O)(2 CH  6 22 6 3 2 3 2 2" + ++ +^ h

Table 1: EDX results showing atomic percentage of elements from the rods in Sample 1.

Atomic (%)
C N O Zn

16.19 8.89 39.53 35.39
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Upon pumping the fibres with a pulsed light source operating at 355 nm (1 kHz 
rep rate), random lasing emission was observed. Lasing output obtained from 
Sample 1 is shown in Figure 3. Lasing threshold was observed at about 12.2 mJ/
cm2 with linewidth of about 0.282 nm. The number of lasing modes increased 
with increasing pump fluence—a conventional signature of random lasing.24–26 
Interestingly, lasing in this case suppressed the spontaneous emission background 
which indicates superior qualities of the lasing spectrum obtained. 

Figure 3:	 (a) Random lasing from Sample 1 obtained at different pump fluence and  
(b) changes in linewidth and intensity of the emission with respect to the 
excitation fluence. Threshold was observed at 12.2 mJ/cm2.

Figure 4 shows the random lasing emission from Sample 2 whereby the synthesis 
of ZnO was prepared together with Sample 1, but the length of the fiber is twice as 
long. Threshold occurs at 16 mJ/cm2 which was observed upon emergence of the 
lasing spike with linewidth as narrow as 0.284 nm. The threshold has increased 
compared to Sample 1 and the spontaneous emission background is high. It is 
likely that a longer fiber substrate contributes to more dissipated losses from the 
photons generated. When less photons participate in scattering within the gain 
medium then the probability to get random lasing to occur reduces significantly, 
and in some cases lasing is not even possible.27 



Journal of Physical Science, Vol. 34(2), 29–40, 2023	 35

Figure 4:	 (a) Random lasing emission from Sample 2 at different pump fluence and  
(b) linewidth and intensity changes upon excitation. Threshold was observed at 
16 mJ/cm2. 

Figure 5 shows random lasing emission from Sample 3 which is a repeated 
synthesis of the ZnO that revealed a more even distribution of ZnO microrods. 
The threshold recorded from this sample is 15.9 mJ/cm2. Similarly, increasing the 
input pumping power increases the number of lasing modes. 

Figure 5:	 (a) Random lasing emission from Sample 3 at different pump fluence and  
(b) linewidth and intensity changes upon excitation. Threshold was observed at 
15.9 mJ/cm2. 

Figure 6 shows the spectrum obtained from two fibers with only ZnO seed layer 
(no microstructures) and only spontaneous emission of ZnO was detected in this 
case. The emission at 385 nm refers to photoluminescence of ZnO.28–30 This serves 
as a control sample whereby lasing is only observed when ZnO microrods are  
prepared on the PCF substrate.
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Figure 6: Spontaneous emission from PCF substrate when only ZnO seed layer is present 
in (a) Sample 1 and (b) Sample 2. Only spontaneous emission was observed even 
at high pumping powers.

For clarity on the effect of a PCF substrate in random lasing, lasing measurements 
were performed on ZnO structures with similar morphology that are prepared on 
glass substrate. The image of the sample and the lasing emission is shown in 
Figure 7. ZnO in this case was synthesised the same way as for the fiber samples 
however to match the nanorod diameter, the molarity of the chemical solution was 
increased to 0.08 M. Lasing was observed at 89.6 mJ/cm2 which is at very high 
pump power in comparison to that observed from ZnO on PCF. Since the sample 
was not annealed post growth, the threshold obtained is also high when compared 
to other random lasing emission on glass prepared by the same method.31,32

Figure 7: (a) FE-SEM image of the ZnO nanorods with upper figure showing the cross 
section and the bottom figure shows top view and (b) random lasing emission 
from the ZnO nanorods prepared on glass substrate. 

To validate lasing emission observed from the samples, changes in light 
confinement was investigated using finite-element approach from COMSOL 
Multiphysics™ software. The structures were redrawn based on FE-SEM 
images in Figure 2. Figure 8(a) and Figure 8(c) is shading of the nanostructures 
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from FE-SEM image of Sample 1 and Sample 3, respectively. Figure 8(b) and 
Figure 8(d) shows the light propagation within the structure when pumped with  
355 nm pumping source. We found the scattering fields mainly locate at the edge of 
ZnO nanorods and the air gaps in between, which also suggests the parameters of 
fabrications in Sample 1 and Sample 3 are suitable for the formations of scattering 
loops for random lasing to occur. 

Figure 8:	 Simulation of light propagation within the structure of Sample 1 and  
Sample 3 whereby (a) and (c) refer to the FE-SEM images of Sample 1 
and Sample 3, respectively; (b) and (d) refer to the light confinement from  
Sample 1 and Sample 3, respectively.

4.	 CONCLUSION

In conclusion, we have shown low threshold random lasing emission from ZnO 
microrods prepared on PCF substrates. The ZnO structures has an average height 
of 2.81 m and average rod diameter of 195 nm. Superior lasing was obtained with 
microrods prepared on fiber substrates without the need of annealing the ZnO 
structures post growth. Threshold of lasing emission was obtained at 12.2 mJ/cm2 

with a narrow spectral width of 0.28 nm. This first reported observation of random 
lasing from a sustainable gain medium embedded on PCF shows promising 
potential in making a ZnO fiber based random laser in the near future. 
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