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ABSTRACT: Biomass can be utilised in place of non-renewable raw resources like coal 
and petroleum residue in the production of activated carbon. Each biomass, however, 
requires different manufacturing process parameters to obtain the desired activated 
carbon characteristics due to their different chemical compositions. This study aims to 
examine the effects of carbonisation heating rates (8°C/min, 10°C/min and 12°C/min) on 
the characteristics of teak sawdust-derived activated carbon. Furthermore, finding the 
proper carbonisation heating rate to provide the optimum characteristics is the originality 
of this study. Activation was carried out at a temperature of 600°C, and simultaneously, 
200 mL/min of nitrogen was doped. Thermogravimetric analysis (TGA), scanning 
electron microscopy (SEM) and adsorption isotherm tests were performed as part of 
the characterisation. The results revealed that activated carbon carbonised at a rate of 
10°C/min produced the best properties. This activated carbon contained 10.8% moisture, 
15.26% volatile, 1.73% ash and 72.43% fixed carbon. The majority of the structure is 
mesopore, with an average pore diameter of 2.43 nm, a pore volume of 0.369 cm3/g and 
a specific surface area of 409.698 m2/g.  Its ability to adsorb nitrogen was 239.102 cm3/g. 
The successful production of activated carbon from biomass waste derived from teak 
sawdust offers hope for untapped sawdust waste and has the potential to be used in a 
number of applications that need adsorption mechanisms.

Keywords:  biomass, precursor, adsorption capacity, surface area, pore volume
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1. INTRODUCTION

Biomass is a renewable raw material that can be used as a source of energy or 
to make other useful products. It is also known as lignocellulosic biomass due 
to its main chemical components being lignin, cellulose and hemicellulose.1 
Lignocellulosic biomass is a non-food, second-generation biomass feedstock 
that is typically composed of 35%–50% cellulose, 20%–35% hemicelluloses and 
10%–25% lignin.2 These biomass feedstocks include agricultural and forestry 
residues, wood and energy crops.3 With its chemical composition and abundant 
quantities almost all over the world, biomass is a very promising raw material. 
Aside from being thermochemically convertible into biofuels,4–7 activated carbon 
is another product of biomass.8–13

Activated carbon is a carbon-containing adsorbent with an irregular crystallographic 
structure formed by randomly distributed microcrystals.14 Because of its unique 
pore structure with a high surface area and pore volume, activated carbon has a 
high porosity. The pore dimensions vary from micropores with a pore diameter of 
less than 2 nm, mesopores with a pore diameter of 2 nm–50 nm and macropores 
with a pore size of more than 50 nm [based on International Union of Pure and 
Applied Chemistry (IUPAC)].15 The activated carbon pores can be cylindrical 
or rectangular in shape, but they can also be irregular and have a narrowing or 
bottleneck.16 Because of the pore structure, activated carbon has a high adsorption 
ability, making it a versatile adsorbent. It has a wide range of applications, 
including biogas purification,17–19 carbon dioxide (CO2) adsorption,20–24 methylene 
blue adsorption,25–29 as a supercapacitor material,13,30,31 as a battery material,32,33 
water treatment,34–36 as well as others.

Activated carbon has a complex pore structure, a large specific surface area, 
excellent chemical stability and various oxygen-containing functional groups on 
the surface.36 Because of its high degree of imperfection and the complexity of its 
structure, activated carbon cannot be characterised using structural formulas or 
chemical analysis.16 Understanding raw materials’ properties and manufacturing 
methods are required to produce activated carbon with superior properties for 
certain applications and less suitable for others.16 Furthermore, an experiment is 
very useful for this purpose.

In general, the production of activated carbon involves three stages: dehydration, 
carbonisation and activation. Before carbonisation, the raw material is dehydrated 
to reduce its water content.14 Lignocellulosic biomass is depolymerised during the 
carbonisation process, resulting in charcoal with a low volatile content and a high 
fixed carbon content. Because some of the resulting carbonisation products (mostly 
in the form of tar) are re-polymerised and condensed to cover the pores, the pore 
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structure of the charcoal produced is not perfect.14 To increase the porosity, the tar 
deposits that cover these pores must be removed via an activation process that can 
be accomplished through physical activation, chemical activation or a combination 
of both. Physical activation is usually performed at higher temperatures (700°C 
–1000°C)14 using activating agents like nitrogen (N2), CO2, argon, steam and 
others. Chemical activation, on the other hand, is an activation process that uses 
chemical activating substances such as sodium hydroxide (NaOH) and phosphoric 
acid (H3PO4). During the activation process, tar deposits are removed, basic pores 
formed during pyrolysis are opened, new pores are formed and existing pores are 
widened, resulting in activated carbon with a high level of porosity.

The formation of activated carbon microstructures, on the other hand, is highly 
dependent on the carbonisation and activation process conditions and parameters, 
such as final temperature, heating rate, holding time and gas mass flow rate.37 
Furthermore, physical parameters such as temperature, heating rate, particle size 
and others may influence pyrolysis end product processes.38 The heating rate is 
one of the most important parameters in the biomass carbonisation process.39 At 
250ºC, it has been reported that a lower heating rate of 5ºC/min produces more 
carbon content (C = 53.87%) than a higher heating rate of 15ºC/min (C = 51.595%). 
However, at higher temperatures (450ºC and 650ºC), a higher heating rate  
(15ºC/min) results in a larger carbon content than a lower heating rate  
(5ºC/min).40 As the carbonisation heating rate (5ºC/s–450ºC/s) increased, Kuo 
Zeng (2018) found that the carbon content, surface area and adsorption capability 
of activated carbon varied.41 Table 1 summarises several studies on heating rate 
treatment, precursors used and optimal characteristics obtained.

Table 1 shows that the optimal heating rate condition is highly dependent on a 
variety of factors, including the type of precursor, carbonisation temperature, 
activating agent type and flow rate and observed response characteristics. To 
produce an optimal characteristic, different raw materials necessitate different 
heating rates. This is due to the fact that the raw materials (biomass) have distinct 
physical and chemical properties.
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Table 1: Lists several studies on the heating rate of carbonisation.

Carbonisation parameters Precursor Optimum characteristic and 
heating rate 

References

Heating rate 5ºC/min and 
15ºC/min, temperature  
650ºC.

Bamboo  
Gigantochloa 
scortechinii

C = 80.71% at 5ºC/min. 40 

Heating rate 10ºC/min–
30ºC/min, temperature 
900ºC, holding time 3 h, N2 
flow rate 100 cm3/min. 

Elaeis guineensis 
frond fiber

SBET =555.67 m2/g, VT = 
0.31 cm3/g, colour removal = 
99.98%, at 10ºC/min.

42

Heating rate 0.7ºC/min, 
1.0ºC/min and 1.4ºC/min. 
temperature 450ºC.

Eucalyptus 
urograndis and 
Mimosa tenuiflora 

Yields charcoal = 36.3% 
(for Eucalyptus urograndis), 
= 43.3% (for Mimosa 
tenuiflora) at heating rate 
0.7ºC /min.

39 

Heating rate 10K/min– 
90K/min in argon flow rate 
of 42 ml/min, grain size of 
63 > DP > 44 µm.

Mengen lignite Yield = 57.2% at 10 K/min. 43

Heating rate 5ºC/min,  
10ºC/min, 15ºC/min, N2 
flow 160 mL/min.

Pinewood Char yield = 31.09% at  
15ºC/min, 400ºC.
Fix carbon = 88% at  
10ºC/min, 700ºC.

44 

Heating rate 5ºC/min,  
10ºC/min and 20ºC/min.

Koraiensis bark Fix carbon = 47.84%; ash = 
17.85%; charcoal yield rate 
= 48%, 63% at 10ºC/min, 
450ºC.

45

Heating rate 5ºC/s to  
450ºC/s (0.083ºC/min–
7.5ºC/min).

Beech wood SBET = 140.8 m2/g at 
150ºC/s (2.5ºC/min).

41 

In addition, research into the production of activated carbon has led to fresh insights 
into the reuse of biomaterials or throwaway items as alternative raw materials for 
making of activated carbon.46 Teak sawdust waste, the biomass used in this study, 
is a by-product of the furniture industry, which uses teak wood (Tectona grandis 
L.f.) as its primary raw material. Some people in Bali, Indonesia, cultivate small 
and medium-sized industries that produce teak wood furniture, and their products 
are popular with both local and foreign residents. However, the teak sawdust was 
not being used optimally and was discarded. Converting it to activated carbon 
is a way to utilise and add value to this waste. There has been little research 
into the use of teak sawdust as a feedstock for activated carbon,47,48 and there 
are still points to study about how the rate of carbonisation affects the activated 
carbon characteristics. In this study, the effect of carbonisation heating rates on 
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the physical and pore structure properties of teak sawdust-activated carbons was 
investigated. The heating rates used are 8ºC/min, 10ºC/min and 12ºC/min, which 
corresponds to a 5ºC/min–15ºC/min,40,44 and 5ºC/min–20ºC/min range.45 The 
originality of this study is in determining the ideal carbonisation heating rate to 
yield the optimal characteristic of activated carbon.

2. EXPERIMENTAL

2.1 Material

The source of the raw material, teak sawdust, was a small furniture factory in 
Klungkung-Bali, Indonesia. To get rid of contaminants, teak sawdust is cleaned 
with distilled water and woven through a mesh with a 60-mesh size. In order to 
reduce the amount of moisture in the raw material, it was then dried for three hours 
at 105ºC in an electric furnace. Table 2 displays the findings from an analysis of a 
25 g sample utilising the Van Soest Analysis technique to determine the precursor’s 
cellulose, hemicellulose and lignin content. In addition, a thermogravimetric 
analysis (TGA) test on 1 g of the precursor was carried out; the outcomes are 
displayed in Table 3.

Table 2: Van Soest analysis of precursor.

Chemical composition of precursor/ teak sawdust (%)
Cellulose Hemicellulose Lignin
43.72 11.38 31.26

3. PREPARATION Of ACTIvATED CARBON

Figure 1 depicts the placement of a carbonisation reactor in a controlled electric 
furnace with 25 g of hydrated teak sawdust. With a heating rate of 8ºC/min, 
the sample was heated to a temperature of 600ºC and immediately activated 
by continuously flowing N2 at a rate of 200 mL/min for 100 min, controlled 
by a flowmeter. Furthermore, the sample was cooled in the furnace until it 
reached room temperature while still being fed N2 for 30 min. Activated carbon 
samples were collected from the activation reactor and stored in an airtight 
container. The same procedures were followed for carbonisation heating rates of  
10ºC/min and 12ºC/min. The resulting activated carbons were designated  
as AC-CR8, AC-CR10 and AC-CR10 for activated carbon carbonised at  
8ºC/min, 10ºC/min and 12ºC/min, respectively, as shown in Figure 2b.
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Figure 1: Experimental set up in producing of activated carbon.

3.1 Characterisation of Activated Carbons

Activated carbons are characterised using TGA, scanning electron microscope 
(SEM) and adsorption isotherm testing. A TGA 701, ASTM D7582 MVA in coal, 
0.02% relative standard deviation (RSD) precision device is used to determine the 
ash, volatile, fixed carbon and moisture of the precursor and activated carbons. 
Using a SEM-JSM-651OLA instrument, the surface morphology of activated 
carbons was examined. Utilising Quantachrome Instruments version 10.01, the 
adsorption isotherm test was conducted after outgassing the material for three 
hours at 300°C. N2 was the gas under investigation; the analysis took 175.1 min, 
and the bath temperature was 77.35K. This test measures the pore surface area 
(SBET), pore volume (VP), pore diameter (DP), pore size distribution (PSD) and N2 
adsorption capability of activated carbon.

Figure 2: (a) Teak sawdust; (b) Activated carbons produced.
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4. RESULTS AND DISCUSSION

4.1 TGA Analysis of Precursor 

TGA is a widely used method for precisely measuring the weight loss of a 
small volume of sample when subjected to controlled temperature profiles and 
heating rates.5 It is primarily graphical representations of sample mass versus 
time or temperature.49 At certain temperatures, the material will lose a significant 
amount of mass when heated continuously from room temperature. Mass loss at 
a specific temperature can indicate test material content and is highly dependent 
on the chemical composition of the raw materials, particularly lignin, cellulose 
and hemicellulose. Since the lignin, cellulose and hemicellulose content of each 
raw material varies, so do the temperatures and times needed for decomposition. 
Teak sawdust consists of 43.72% cellulose, 11.38% hemicellulose and 31.26% 
lignin as shown in Table 2. Decomposition of hemicellulose took place at 
temperatures ranging from 223.4ºC–332.8ºC, cellulose at 326.8ºC–369.7ºC and 
lignin at 311.5ºC–461.3ºC.50 Other researchers reported that thermal degradation 
of cellulose, hemicellulose and lignin occurs at 300ºC–400ºC,51 200ºC–350ºC52 
and 600ºC–700ºC,53 respectively. 

Figure 3 shows that the decomposition of the precursor begins with a mass 
loss of about 11% between the 25th and 45th min at temperatures ranging from  
30ºC–110ºC . The evaporation of a small amount of water vapour in the precursor 
causes this mass loss. The weight loss remained constant at 11% from 46th to 
135th min, up to a temperature of 270ºC. The precursor drying process takes 
the form of a decrease in water content during this time. After the precursor 
dries, the temperature rises to 330ºC, with a 30% weight loss and the mass loss 
reaches 38% up to a temperature of 390ºC. At a temperature of 270ºC–390ºC, it 
takes approximately 95 min to lose 38% mass. Hemicellulose and some lignin 
decompose at temperatures ranging from 270ºC–330ºC,50–52  while cellulose and 
more lignin decompose at temperatures ranging from 330ºC–390ºC.49  Further 
lignin decomposition occurs at temperatures ranging from 390ºC–950ºC,50 with 
up to 80% mass loss. In addition, the ashing process is carried out, in which the 
temperature is reduced to 600ºC while oxygen is pumped into the reactor to start 
the combustion process. When the temperature reaches 750ºC, the mass reduction 
percentage reaches 98.16%, with the remainder being ash (1.84%).
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Figure 3: The relationship between weight loss, time and temperature of precursor.

The values of the precursor proximate analysis are shown in Table 3. The 
precursor’s moisture, volatile, ash and fixed carbon content are 8.37%, 71.23%, 
1.84% and 18.56%, respectively. The moisture content of various biomass (Siam 
weed, Gmeliana arborea, sugarcane straw, rice husk, shea butter wood, palm 
kernel shell, bamboo wood) has been reported to range from 0.18% to 2.19% 
which is lower than the moisture of the precursor.54 The other proximate elements 
of the precursor are in the range of those biomass’s volatiles, ash and fixed carbon, 
with 61.80%–85.20%, 0.94%–20.89% and 11.14%–22.40%, respectively.54 Felix 
(2022), reported that the teak sawdust’s moisture, volatile, ash and fixed carbon 
are 3.87%, 78.17%, 3.53% and 14.43%, respectively.49 Ramires (2020) discovered 
that the TGA teakwood sawdust elements were 5.05% moisture, 83.92% volatile 
matter, 15.67% fixed carbon and 0.41% ash.48 The difference in the proximate 
element percentage of the precursors used in this study was caused by several 
factors, including age, where the plant grew, habitat (place of life), climate, 
nutrient availability and others.

Table 3: TGA analysis of precursor and activated carbons produced.

Samples
The values of TGA elements (%)

Moisture Volatile Ash Fix carbon
Precursor 8.37 71.23 1.84 18.56

AC-CR8 9.15 11.55 5.26 74.04

AC-CR10 10.58 15.26 1.73 72.43

AC-CR12 8.93 11.30 5.89 73.88
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4.2 The Effect of Heating Rate on the TGA Elements of Activated Carbons

The three activated carbons exhibit the same pattern in terms of thermal stability 
and thermogravimetric behaviour, but they require different amounts of time and 
temperature to attain mass reduction stability, as seen in Figure 4(a), (b) and (c). 
For the precursor and the three activated carbons, Figure 5(a) and (b) illustrate the 
link between mass loss and temperature as well as the association between mass 
loss and time.

Figure 4: The relationship between weight loss, time and temperature of samples  
(a) AC-CR8, (b) AC-CR10 and (c) AC-CR12.
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Figure 5: (a) The weight loss and time relationship of the precursor and activated carbons, 
(b) The weight loss and temperature relationship of precursor and activated 
carbons.

It can be seen that the activation rate has a varying effect on mass changes. Heating 
from room temperature to 107ºC is a moist process, meaning it reduces the water 
content of the specimen.29 Until a temperature of 107ºC, the remaining mass of 
AC-CR8 is approximately 90.75%, while the mass of AC-CR10 and AC-CR12 
is approximately 91.0% and 89.250%, respectively. In other words, the initial 
mass losses for AC-CR8, AC-CR10 and AC-CR12 were 9.25%, 9% and 10.75%, 
respectively. This process lasts approximately 180 min at a constant temperature 
of 107ºC. The percentage of mass reduction is proportional to the moisture content 
of the sample (AC-CR10 > AC-CR8 > AC-CR12), with the higher the moisture 
content, the greater the mass reduction. The temperature range of initial mass loss 
of activated carbon from different precursor is also different. Mohd Azani et al., 
reported that the initial mass loss activated carbon derived from rubber seed shell 
occurred in the range of 29ºC–144ºC with a percentage loss of 4.59%.29

Furthermore, due to the reduced volatile content, mass loss occurs rapidly as 
the temperature rises to 951.5ºC. Samples with the highest volatile content also 
experienced the greatest mass reduction. The remaining mass of the sample at 
951.5ºC was 79.6%, 78% and 70.9% for AC-CR8, AC-CR10 and AC-CR12, 
respectively. Furthermore, the test temperature is reduced to 600ºC while oxygen 
begins to flow, allowing the combustion process to continue until ash is formed. 
Along with continued heating, there was another decrease in sample mass due to 
the reduction of other gases during the combustion process until the formation 
of ash at 750ºC. The ash mass was the remaining mass at the end of the test, 
which was 5.26%, 1.73% and 5.89% for AC-CR8, AC-CR10 and AC-CR12, 
respectively.

(a) (b)
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The effect of the carbonisation heating rate on the resulting proximate component 
varied as well. By increasing the carbonisation heating rate from 8ºC/min to 
10ºC/min, the moisture and volatile values increased while the fixed carbon and 
ash values decreased. When the carbonisation rate was raised from 10ºC/min to 
12ºC/min, the moisture and volatiles decreased while the fixed carbon and ash 
increased, as shown in Table 3.

4.3 The Effect of Heating Rate on the Pore Structure of Activated Carbons

The pore structure parameters of the activated carbons, such as specific SBET, PSD 
and VP, were determined by the N2 adsorption isotherm test.55 Figure 6 depicts the 
graph of the N2 adsorption isotherm, while Figure 7 depicts the PSD. The heating 
rate of carbonisation also has a fluctuating effect on the pore structure of the 
activated carbon. An increase in the heating rate from 8ºC/min–10ºC/min causes 
a significant increase in N2 uptake. However, from the carbonisation heating 
rate of 10ºC/min–12ºC/min, the increase in relative pressure has no significant 
effect on increasing N2 adsorption. At each level of relative pressure, the amount 
of N2 adsorbed in AC-CR12 is much smaller than that of AC-CR10. The order  
of level N2 adsorption at each relative pressure change is AC-CR10 > AC-CR8 > 
AC-CR12.

The N2 adsorption capacity increased proportionally until reaching a relative 
pressure of 1 for AC-CR10, while for AC-CR 8 and AC-AR12, the increase in N2 
adsorption capacity was not significant. The absence of significant N2 uptake at 
relative pressures below 0.05 indicates that the three activated carbons are mainly 
mesopores, supplemented by a small number of micropores.55

Figure 6: Adsorption isotherm of activated carbons.
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Figure 7:  PSD of activated carbons.

The carbonisation heating rates affects the different PSD of activated carbons, 
as shown in Figure 7. The PSD of AC-CR8 was mainly distributed at 1.7 nm– 
12 nm with two peaks (bimodal distribution); the PSD of AC-CR10 was spread at 
1.7 nm–44 nm with one peak (monomodal distribution); while the PSD of 
AC-CR12 was distributed at 1.7 nm–17.5 nm with four peaks (multimodal 
distribution). The three activated carbons have a pore structure, as seen in  
Figure 7, with the majority of the mesopores being between 2 nm and 50 nm 
in size and the minority being smaller than 2 nm in size. This is corroborated 
by Table 4’s display of the average DP of the three activated carbons in the 
mesopore.

The SBET of AC-CR8, AC-CR10 and AC-CR12 activated carbons were  
180.285 m2/g, 409.698 m2/g and 67.839 m2/g, respectively, with total VP of 
0.109 cm3/g, 0.369 cm3/g and 0.043 cm3/g and average DP of 2.43 nm, 3.61 nm 
and 2.54 nm. This also demonstrates that the carbonisation heating rate has a 
fluctuating effect on the SBET, total VP and average DP. The order of SBET and total 
VP is AC-CR10 > AC-CR8 > AC-CR12, while the DP is AC-CR10 > AC-CR12 
> AC-CR8. This also has implications for the amount of N2 that can be absorbed 
at a relative pressure of 1, where activated carbon which has the highest SBET 
and VP has the highest N2 adsorption as well, as shown in Figure 8. The order of 
adsorption of activated carbon to N2 is AC-CR10. >AC-CR8>AC-CR12, in line 
with the order of SBET and total VP.
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Table 4:  Surface structural of activated carbons.

Samples SBET 
(m2/g)

VP

(cm3/g)
DP

(nm)

AC-CR8 180.285 0.109 2.43
AC-CR10 409.698 0.369 3.61
AC-CR12 67.839 0.043 2.54

Figure 8: N2 adsorption capacity of activated carbons.

The heating rate determines the gas formation and diffusion rates, which control 
the formation of the pore structure during carbonisation.56 Pore structures vary 
depending on the heating rate. The best heating rate can only be determined 
by experimentation; it cannot be anticipated. The specific SBET, VP and PSD of 
activated carbon as well as the kind of substance adsorbed (adsorbate) have a 
significant impact on its ability to adsorb substances.57 Higher VP and SBET 
activated carbon typically has superior adsorption capacity.  Activated carbon 
with a higher VP and SBET generally has a better adsorption capacity. Additionally, 
the adsorption capacity of activated carbon is also significantly influenced by 
the PSD.57,58 With the same PSD, activated carbon may have varying adsorption 
capacities for various substances. On the other hand, when used to adsorb the 
same adsorbate, activated carbon with different pore size distributions may have 
varying adsorption capabilities. Adsorbate has unique characteristics based on the 
size of its molecules. Only substances whose molecular diameter is equal to or 
lower than the activated carbon’s DP can be absorbed.
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4.4 Surface Morphology of Activated Carbons

Figures 9, 10 and 11 for AC-CR8, AC-CR10 and AC-CR12, respectively, show 
the pictures that were produced after SEM was used to observe the surface 
morphology of the activated carbon. The resulting surface morphology consists 
of carbon nano-thin sheets that form grooves. The grooves of AC-CR12 are  
mostly covered by debris, ash or collapse of the carbon atom skeletons. This 
is consistent with the fact that AC-CR12 has the highest ash content, the  
lowest surface area, pore-volume and N2 adsorption capacity compared to AC-CR8 
and AC-CR10. The shape of the pore grooves varies, most of them are elongated 
with diameters mostly resembling circles and irregular shapes. Based on the 
resulting SEM image, the order of the number of pores produced is AC-CR10 > 
AC-CR8 > AC-CR12. In general, this study found that the optimal heating rate of 
carbonisation is 10ºC/min because it produces the highest SBET, VP, N2 adsorption 
capacity and lowest ash content. The same optimum carbonisation heating rate of 
10ºC/min were in accordance with some studies41–44 although the raw materials 
used and the characteristics observed were different.

Figure 9:  SEM image of AC-CR8.
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Figure 10:  SEM image of AC-CR10.

Figure 11: SEM image of AC-CR12.

5. CONCLUSIONS

Various carbonisation heating rates were used to successfully convert waste 
teak sawdust into activated carbon, which produced various properties. The 
carbonisation heating rate has a fluctuating effect on the composition of the 
proximate and the pore structure of the activated carbons. The ranges for the activated 
carbons’ moisture, volatiles, ash and fixed carbon were 8.93%–10.58%, 11.3%–
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15.26%, 1.73%–5.89% and 72.43%–74.04%, respectively. In the meantime, the 
measured SBET, total VP and average DP all ranged from 67.839 m2/g–40.698 m2/g,  
0.043 cm3/g–0.369 cm3/g and 2.43 nm–3.61 nm, respectively. The greatest 
outcomes are obtained with activated carbon carbonised at a heating rate of  
10ºC/min (AC-CR10). This activated carbon has the largest SBET surface area and 
VP (409.698 m2/g and 0.369 cm3/g), the DP of 3.61 nm, the lowest ash content 
(1.73%) and the highest N2 adsorption capacity (239.102 cm3/g). In addition to 
successfully turning teak sawdust waste into activated carbon, this product (AC-
CR10) also has the potential to be employed in a number of other applications, 
including the purification of biogas, the adsorption of CO2 and methylene blue, 
among others. The shortcoming of this study is that it only looks at the effects of 
heating rate carbonisation on pore structure, TGA elements and activated carbon 
morphology without considering how it relates to changes in crystal structure, 
interactions with surface morphology and gas adsorption mechanisms, all of 
which need to be thoroughly studied in the future.
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