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ABSTRACT: Silicon (Si) wafers, critical substrates for semiconductor and photovoltaic
(PV) device fabrication, require surface cleaning and damage removal to ensure high-
quality performance. This study investigates the surface morphology and contamination
levels of monocrystalline silicon (c-Si) and multicrystalline silicon (mc-Si) wafers before and
after cleaning. Scanning electron microscopy (SEM) and Energy-dispersive X-ray (EDX)
analysis revealed that, before cleaning, both wafer types exhibit micro-roughness and contain
contaminants such as iron (Fe), oxygen (O), nitrogen (N), carbon (C) and fluorine (F). For
the as-cut c-Si wafer, EDX data reveals a Si content of 85.08%, with contamination levels of
C (9.38%), O (2.41%), N (1.45%) and F (0.68%). In mc-Si wafers, slicing introduces surface
roughness and leaves residues, with the surface characterised by particulates and metallic
contaminants. Following the damage removal process using nitric acid/hydrofluoric acid
(HNO3/HF) etching, the contamination levels on mc-Si wafers reduce significantly, with Si
content increasing to 90.8%. In comparison, C decreases to 7.5%, and O drops to 1.7%. The
wet-chemical etching removes -5 pm—12 pm of wafer thickness, effectively eliminating surface
defects and contaminants. The cleaning process reduces particulate contamination by over
90%, and a smooth, defect-free surface is observed in SEM images post-cleaning. These results
demonstrate that adequate cleaning and damage removal are essential for improving solar
cell efficiency by enhancing carrier lifetime, reducing surface recombination, and minimising
leakage currents.
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1. INTRODUCTION

Silicon (Si) wafers are the foundational material for most semiconductor devices,
forming the basis for various electronic components, from simple diodes to complex
integrated circuits. Notably, the performance and reliability of these devices are
critically dependent on the quality of the Si wafer surface, which must be meticulously
controlled and maintained throughout the manufacturing process. As such, any
imperfections or contaminants on the wafer surface can lead to defects in the final
product, impacting yield and device functionality.

One key stage in semiconductor fabrication is preparing the Si wafer surface through
a series of cleaning and etching processes. These processes are designed to remove
contaminants, native oxides and residual material from previous processing steps and
create an optimal surface for subsequent device fabrication stages. Furthermore, cleaning
processes are critical in manufacturing monocrystalline (c-Si) and multicrystalline
(mc-Si) solar cells since contamination on the Si wafer surface can negatively impact
solar cell performance. These contaminants can include organic residues, particles,
metallic impurities and chemical residues from earlier processing steps.' Thus,
effective cleaning ensures that the wafer surface is free from contaminants, allowing for
optimal electrical and optical properties and directly influencing solar cells” efficiency
and reliability. After cleaning, the front surface of Si wafers will be smooth and planar
without any additional surface texturisation. Unlike textured surfaces, planar Si solar
cells reflect most incident photons instead of absorbing them inside.”

Thus, post-etching after cleaning is crucial to reduce optical losses by creating
additional texture structures on the Si wafers. Note that optical losses in both ¢-Si
and mc-Si solar cells significantly affect overall cell efficiency. These losses occur due
to the reflection and transmission of light, as well as the absorption of light in non-
active layers or materials. In particular, Si has a relatively high refractive index (-3.5),
meaning a significant amount of light reflects from its surface.®'> Without surface
treatment, up to 30% of the light can be lost to reflection.'>!* Table 1 summarises the
common losses of Si wafers.

Table 1: Type of losses on ¢c-Si and me-Si7'4 8

Type of losses c-Si mc-Si

Reflection losses Lower due to uniform, effective Higher due to non-uniform
texturing texturing

Absorption losses Losses mainly in UV Similar to ¢-Si

Transmission losses This can be minimised with thin Slightly higher due to thicker wafers
wafers needed

Scattering losses Negligible due to single crystal Higher due to grain boundaries and

structure imperfections
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Thus, texturing the surface of c-Si and mc-Si silicon is critical in fabrication.
It plays a crucial role in enhancing the efficiency of solar cells by improving light
absorption, reducing reflection losses, and enhancing the overall optical properties
of the cell. However, the texturing process varies for c-Si and mc-Si due to their
distinct crystallographic structures, and each requires tailored techniques to achieve
optimal performance. A significant portion of incident light on a planar, un-textured
Si surface is reflected, which reduces the amount of light available for conversion
into photo-electricity. In addition, texturing dramatically reduces reflection losses by
altering the surface morphology to trap light. In ¢-Si cells, reflection losses can be
reduced from 30% to around 10%,'*** while mc-Si texturing reduces reflectance to
around 10%-20%.7!

Other than that, textured surfaces increase the optical path length of light within
the Si wafer. When light hits the textured surface, it bounces around multiple times,
increasing the probability of absorption. This is especially important for near-infrared
light, which has longer wavelengths and is less efficiently absorbed. Notably, the more
light absorbed, the more charge carriers are generated, leading to higher current and
efficiency. The primary goal of texturing is to improve light absorption, which directly
translates to better performance in terms of the solar cell’s conversion efficiency. As
such, textured cells exhibit higher short-circuit current density (J,) and improved
overall efficiency compared to un-textured cells. In ¢-Si cells, the most commonly
used texturing process is alkaline texturing with potassium hydroxide (KOH) or
sodium hydroxide (NaOH). The etching solution preferentially etches the [100]
crystallographic plane while leaving the [111] planes intact. Unlike c-Si, mc-Si cannot
be textured with alkaline solutions due to its random crystallographic orientation.
Instead, an acidic solution, typically a mixture of hydrofluoric acid (HF) and nitric
acid (HNOs), is used for isotropic texturing. However, this article highlights the
impact of the cleaning process on Si wafers and alkaline texturing on ¢-Si and mec-Si
on enhancing surface roughness where incident light is trapped.

11 Methodology

To achieve optimal efficiency in solar cell manufacturing, enhancing both the front
and rear surfaces of Si wafers is essential. The cleaning process, a critical initial step
in solar cell production, is pivotal in this optimisation. This process involves using
various etchant solutions, which are key to ensuring the desired surface quality and
higher efficiency. The Si etching process is primarily governed by two factors: (1) the
surface reaction kinetics and (2) the diffusion rate of reactants to the wafer surface.
These two mechanisms collectively dictate the overall rate of microstructural growth
during etching, making them fundamental to controlling surface morphology and
improving wafer performance for solar applications.
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The Radio Corporation of America (RCA) cleaning process, originally developed by
the RCA and refined by our research team, is employed to effectively clean Si wafers.
This process consists of two critical steps. The first step utilises the RCA-1 solution,
a mixture of ammonium hydroxide (NH4OH,), hydrogen peroxide (H,O,) and
deionised water (H,O) with a volume ratio of 1:1:5 (NH,OH,:H,0,:H,0). The
solution is heated to a temperature of 70°C-80°C for less than 1 min to efficiently
remove organic contaminants from the Si wafer surface. Following this, the wafers
are subjected to the RCA-2 cleaning solution, comprising a 1:1:6 (HCI:H,0,:H,0)
volume ratio of hydrochloric acid (HCI), H,O, and H,O . The solution is heated
to 80°C, and the wafers are immersed for 10 min, effectively eliminating metallic
impurities. This meticulous cleaning procedure ensures the removal of organic and
metallic contaminants, providing a clean and contaminant-free surface essential for
optimising subsequent processes in solar cell fabrication.

All the work presented here was conducted on (10 x 10) cm? wafer size, p-type [100]
¢-Si and [100] mc-Si wafer. The following process was cleaning with saw damage
removal solution by etching the wafers in 10% NaOH solution at 70°C for 10 min.
Subsequently, the wafer is rinsed with H,O, and the native oxide is removed from the
dilute HF to form hydrophobic surfaces. Next, the texturing occurs in the solution
of KOH mixed with isopropyl alcohol (IPA) and H,O at volume ratio of 1.5:5:125
(KOH:IPA:H,0) at 70°C for 30 min. Prior to emitter deposition, the textured wafer
is cleaned in NH,OH:H,0,:H,0 with volume ratio of 1:1:5 solution at 70°C for
10 min to form hydrophilic surfaces. Finally, all the samples are rinsed with H,O
and dried with nitrogen gas ambient to ensure they are clean for visualisation and
characterisation as shown in Figure 1. The method used in Srivastava et al. mainly
focused on n-type [100] Si wafers cleaned by using ultrasonication for each Si wafers
with area of 3.5 x 3.5 cm? followed by texturisation process by using 2% KOH and
20% IPA solution at 80 + 5°C for 15 min—90 min.,, In this article, p-type [100]
c-Si and [100] mc-Si wafer with the size of 10 x 10 cm” was cleaned in a single
cleaning process at a maximum quantity of 25 samples in one process as shown in
Figure 1.°* According to Figure 1, the flowchart illustrates the step-by-step process of
cleaning and texturing a 10 x 10 cm? p-type [100] ¢-Si and mc-Si [100] wafer before
visualisation and characterisation. As compared with Srivastava et al., the cleaning
process by ultrasonication process can only be conducted only one sample at the same
time.*” Thus, requires more additional preparation steps just for the cleaning process.
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Wafer Selection

(10x10 cm?, p-type [100] c-Si and [100] mc-Si)

Saw Damage Removal
— Etch in 10% NaOH @ 70°C for 10 min

Rinse with H20

Oxide Removal
— Dip in dilute HF = Hydrophobic Surface

Texturing Process
— Etch in KOH:IPA:H»O (1.5:5:125)
@ 70°C for 30 min

Pre-Emitter Cleaning
— NH+OH:H202:H20 (1:1:5) @ 70°C for 10 min
— Hydrophilic Surface

Final Rinse with H20 ‘

A
| Dry with Nitrogen Gas Ambient

Ready for Visualisation and Characterisation

Figure 1: Wafer cleaning and texturing p-rocess flowchart.

After the experiment, scanning electron miscoscopy (SEM) was employed to observed
the surface morphology of ¢-Si and mec-Si samples, highlighting surface morphology
and texturing. This procedure will be evaluate the condition of Si wafers before and
after the cleaning process with nitric/HF etching. Other than that, Energy-dispersive
X-ray (EDX) analysis was performed to identify elemental composition and detect
any surface impurities or treatment elements. The EDX evaluation will be before and
after the damage removal process on Si wafers with nitric/HF etching. In addition,
area roughness was also evaluated through SEM image analysis to compare surface
topography for as-cut c-Si, ¢-Si after damage removal, ¢-Si with pyramid textured and
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mc-Si. Generally, ¢-Si should be exhibit smoother surfaces, while poly-Si show higher
surface roughness due to grain structures. Roughness parameters such as average
roughness (R,) provided insights into surface uniformity, influencing light scattering
and potential solar cell performance.

2. RESULTS AND DISCUSSION

Figure 2 displays SEM analysis on the c¢-Si wafer before cleaning. Si wafers are
fundamental components in semiconductor device fabrication, serving as substrates
for integrated circuits and other electronic devices. The surface morphology of Si wafers
before any cleaning or damage removal processes is a critical factor in determining
the quality and performance of the final devices. Si wafers are typically sliced from
a single-crystal Si ingot using a diamond wire saw or a laser cutting technique. This
slicing process can introduce micro-roughness and surface texture variations at the
micro or nanoscale, as illustrated in Figure 2. However, micro-roughness can affect
the uniformity of thin films deposited during later fabrication steps, influencing device
performance. Hence, surface texture analysis often reveals microscopic grooves and
ridges (formed during the slicing process) but also produces step-terraces (resulting
from the crystallographic orientation of the Si).

HTI-Lab 2.0kV 12.5mm x9.00k SE(L)

Figure 2: SEM pictures analysis on c-Si before the cleaning process.

All elements on the Si wafer surface are identified using an EDX, as in Figure 3.
Surface contaminants on Si wafers can originate from various sources during
manufacturing and handling. These contaminants can significantly affect the
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performance and reliability of semiconductor devices. The EDX analysis of the as-
cut Si wafer is displayed in Figure 3. The element prominent in the EDX scan is Si
(86.38%), with low quantities of carbon (C) (7.40%), oxygen (O) (2.96%), nitrogen
(N) (2.44%), fluorine (F) (0.43%) and iron (Fe) (0.39%). Metals such as Fe, copper
(Cu) and aluminum (Al) can be deposited on the wafer surface through contact with
processing equipment and tools. These metallic contaminants can introduce deep-
level traps in the Si, affecting the electrical properties of the devices. Despite this,
Fe precipitates can cause severe efficiency degradation in solar cells when exposed
to moisture, O, heat, light, mechanical stress and reverse bias.**>¢ Other than that,
when Si wafers are exposed to air, they naturally form a thin layer of silicon dioxide
(SiO,) on their surface. This native oxide layer can vary in thickness (typically a
few nano-meters) and is often uneven. Accordingly, the presence of this oxide layer
can influence the electrical characteristics of the wafer, and its removal is usually
necessary before further processing. In addition, oxide precipitates during solar cell
production can cause severe efficiency degradation, limiting the lifetime of Si solar
cell wafers.?**3? The surface morphology of Si wafers before cleaning and damage
removal encompasses various imperfections and contaminants that can significantly
influence semiconductor device fabrication. Thus, the cleaning and damage process
on Si wafers should be performed prior to fabricating Si solar cells by minimising the
various imperfections and contaminants, as depicted in Figure 2 and Figure 4 on ¢-Si,
to gain higher overall performance.
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Figure 3: EDX scan and contamination table of the as-cut surface with Fe and other minants;
C concentration is system-dependent.

Figure 4 displays SEM analysis on the mc-Si wafer before it is immersed in a damage-
removal solution. Furthermore, mc-Si wafers are widely used in the photovoltaic
(PV) industry to produce solar cells. Unlike ¢-Si, which is grown as a single crystal,
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mc-Si consists of multiple crystal grains. This mc-Si structure introduces unique
surface morphology characteristics crucial to understanding and improving solar cell
efficiency and manufacturing processes. The initial surface of mc-Si wafers is typically
rougher compared to c-Si due to the varied orientations of the crystal grains. Similar
to c-Si, as portrayed inF igure 2, mc-Si wafers can have various contaminants on their
surface before cleaning, such as particulate and metallic contaminants. Particulate
contaminants from dust particles, slicing debris, and residues from handling can
be present, as illustrated in Figure 4. These particles can create localised defects and
affect subsequent processing steps. Meanwhile, metallic contaminants are metals from
processing equipment and tools that can be deposited on the wafer surface, potentially
causing electronic defects in solar cells. According to Figure 5, those particles illustrated
in Figure 4 are classified as contaminants of F, with a high O concentration owing to
native oxide, N and C from the Si wafer production process. These contamination of
F (0.22%), O (2.41%), N (2.94%) and C (9.38%) have a significant impact on the
overall fabrication process and percentage conversion efficiency (PCE) of Si solar cell
devices. Contaminants like C, O, N, F and Fe introduce challenges that can degrade
solar cell performance. In particular, C and O residues may affect the uniformity of
coatings and increase surface reflection losses, reducing light absorption. Meanwhile,
N and F residues, although sometimes beneficial, must be carefully controlled to
prevent defect formation. F contamination on Si wafers can thin spin-on dielectric
films and affect their wetting properties in semiconductor manufacturing, -

- - -

HTI-Lab 2.0kV 12.4mm x4.50k SE(L)

Figure 4: The SEMS before the damage removal process on mc-Si wafers with nitric/HF
etching.
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Figure 5: EDX scan before the damage removal process on mc-Si wafers with nitric/HF
etching.

In order to eliminate both particulate contaminants and metallic contaminants,
cleaning and damage removal processes on mc-Si have been conducted. Figure 6
displays an mc-Si wafer after cleaning and damage removal processes using an acidic
solution to remove all the residue and dust. This wet-chemical etching procedure
is used to etch the mc-Si substrate to a thickness of around ~5 pm—12 pm thick.
Compared with Figure 4, the surface of the mc-Si wafer displayed in Figure 6 is almost
free from contamination and has a much smoother surface. The cleaning process on
the Si wafer will successfully remove or reduce contaminations.**~4 Meanwhile, the
damage removal process on Si wafers is a critical step for excellent passivation on Si
wafers that will enhance solar cell performance.”>*% After the cleaning and damage
removal processes, the surface morphology of mc-Si wafers undergoes significant
changes. These processes are essential to prepare the wafers for further semiconductor
fabrication steps, such as doping, deposition and etching, which are crucial for
producing efficient solar cells and other electronic devices. Compared with EDX data
in Figure 5, the percentage of Si increases from 85.08% to 90.8%. At the same time, F
and N contaminants are eliminated after the damage removal process with nitric/HF
etching. In addition, there is a significant reduction in the contamination percentage
by C (9.38%-7.50%) and O (2.41%-1.70%), as depicted in EDX from Figure
7. Thus, the damage removal process using nitric/HF etching on mc-Si effectively
eliminates and reduces the contamination after the Si wafers production process.
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Figure 6: The SEM after the damage removal process on me-Si wafers with nitric/HF etching,.

Figure 7: EDX scan along with the contamination table following the nitric/HF treatment.

After being etched, Figure 7 displays the element composition and concentration
on the wafer surface. The cleaning and damage removal process using nitric/HF
etching significantly improves the surface morphology of mc-Si wafers by effectively
reducing both particle and metallic contaminants. Prior to cleaning, wafers typically
exhibit numerous particulate contaminants from environmental dust, slicing residues,
handling and metallic contaminants such as Fe, oxides, C, N and F from equipment
contact and environmental exposure, as illustrated in Figure 3. These contaminants
negatively impact device performance by causing localised defects, non-uniform film
deposition, etching irregularities and introducing deep-level traps that affect electrical
properties. Meanwhile, post-cleaning, the nitric/HF etching process, which combines
the oxidising action of HNO; with the etching capabilities of HF, drastically
reduces particle contaminants by over 90%. It also lowers metallic contaminant
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concentrations by several orders of magnitude, which is displayed in Figure 7. This
results in a smoother, cleaner surface with fewer visible defects and improved electrical
properties, such as lower leakage currents and higher carrier lifetimes, compared
with Figure 4. Note that characterisation techniques like SEMS and EDX confirm
these improvements, highlighting significantly fewer contaminants and a more
uniform surface. This enhances the efficiency and reliability of solar cells and other
semiconductor devices.

After the cleaning procedure, the Si surfaces appear bright, clean, smooth and
hydrophobic, as displayed in Figure 8(a). Previous research suggested optimising light
trapping in solar cells, with typical pyramid textures needing to be developed through
wet-chemical etching using a chemical bath alkaline solution for both sides.*¢ The Si
wafer follows a texturisation process with alkaline-wet chemical etching, as displayed
in Figure 8(b). Due to the texturing technique, the surface appears rough, gloomy and
dark. The picture of the mc-Si wafer is illustrated in Figure 8(c). The mc-Si is readily
visible in the photograph, consisting of numerous crystals randomly positioned
throughout the wafer surface.

According to Figure 8(a), the damage removal and cleaning processes significantly
improve the condition and morphology of both as-cut and polished c-Si wafers.
Initially rough with micro-cracks and saw marks, as-cut wafers become smoother
and more uniform after chemical etching and cleaning, though they still retain
some residual roughness and defects. Notably, these processes also effectively reduce
contaminants introduced during cutting. In contrast, polished wafers, which start
with a mirror-like finish and minimal defects due to mechanical and chemical
polishing, maintain their smooth, uniform surface post-cleaning, with any minor
polishing-induced defects further minimised. Furthermore, the cleaning process
ensures that both wafer types achieve the necessary surface quality for subsequent
semiconductor processing, with polished wafers exhibiting exceptionally low
roughness, minimal defects and low contaminant levels, making them ideal for
high-precision applications. Overall, cleaning and damage removal can eliminate
contaminations and surface defects that will enhance the photo-electrical performance
of Si solar cells.? 4857

After the texturing process, as displayed in Figure 8(b) and Figure 8(c), the condition
and morphology of ¢-Si wafer surfaces, enhanced by alkaline-wet chemical etching,
exhibit significant improvements crucial for solar cell efficiency. The etching, typically
using KOH or NaOH with additives like IPA, creates uniform pyramid-like structures
that increase surface roughness and enhance light trapping by reducing reflectance.
Note that these pyramidal structures result from the anisotropic etching properties of
the alkaline solution. It etches Si at varying rates along various crystallographic planes,
typically exposing the [111] planes. Moreover, this process also minimises surface
defects and effectively removes contaminants, ensuring a cleaner wafer surface.
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Figure 8: Shows (a) front view of a c-Si wafer after the damage reduction process, (b) alkaline-
wet chemical etching was utilised after the texturing process and (c) after texturing,
a mc-Si wafer.

The IPA solution used in the texturing process impacts the size of the pyramid, as
displayed in Figure 9(a). The pyramid’s structure becomes more uniform with the
presence of IPA at an optimal concentration. The IPA solution used in the texturing
process impacts the size of the pyramid texture on Si surfaces. As such, the pyramid
texture on the wafer surface becomes more uniform with the presence of IPA solution
at the optimal concentration.

In addition, previous research has explained that anisotropic chemical etching of Si
[100] crystal-oriented wafers gives rise to textured surfaces.*%** The characteristics
of the etching depend upon the time of etching rate, temperature components of the
solution and concentration. However, with a dilute NaOH solution that contains IPA
and DI water, the Si with [100] crystal-orientation smooth wafers can grow pyramidal
surface texture at 70°C temperature. In particular, the surface texturing was performed
by asymmetric etching the wafers” front surface using a dilute alkaline solution. The
loss in mass of each wafer is estimated from the mass of the wafer measured with a
microbalance before and after texturing, which subsequently leads to the estimation
of the etched thickness of the wafer and, hence, the etch rate.

Other than that, Figure 9(b) exhibits surface texturisation by an alkaline solution on
the surface of the mc-Si wafer. After the texturisation process, the morphology on the
mc-Si surface demonstrates an almost square-shaped crater. Thus, these structures
are much more different from the textured morphology on c-Si wafers, which is
pyramidal textures. In conjunction, the alkaline etchant is more effective in etching
[100] Si surfaces and much quicker than [111] mc-Si surfaces. The etching rate of the
[111] planes is much slower compared to the [100] or [110] planes. This anisotropic



Journal of Physical Science, Vol. 36(2), 39-59, 2025 51

behaviour indicates that the etching does not proceed uniformly across all directions,
forming distinct surface features based on the crystallographic planes exposed during
etching. Poly-Si wafers have many small crystallites or grains, each with different
orientations. When an alkaline solution like NaOH or KOH etches these grains,
the planes are etched at different rates—however, the square-shaped craters formed
by this texturing process benefit light trapping. The rough, cratered surface scatters
incoming light, increasing the absorption of sunlight and improving the efhiciency of
the solar cell. Moreover, overly deep craters could lead to surface defects or increased
recombination losses, so the process must be carefully controlled.

ENT = 15.00 KV Signal A= AsB
Mag= 100K X

Figure 9: FESEM evaluation of alkaline etching on (a) ¢-Si and (b) mec-Si.
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Figure 10 displays a close view of the pyramidal texture by alkaline etchant on ¢-Si
watfers. The textured size is approximately 6 pm—9 pm in height and 6 pm in width,
as illustrated in Figure 10. Meanwhile, the base angle of the pyramid is in the range
of 54.00°-54.50°. According to the findings, at a temperature of 70°C-80°C, it is
possible to construct an ideal pyramid shape all over the wafer surface. The base angle
of the pyramid textured presented here is about 54.00°-55.00°. Alternatively, Omar
et al. reported that the base angle of the texture should be close to 50.00°-52.00° and
most commonly accepted 54.74°.'¢

On the other hand, Rais et al. described from the PC3S simulation analysis of spectral
transmission in Si solar cell with pyramidal texturisation: the front surface was higher
than under the practical and proposed base angels of texture around 50°-52°.7 Balaji
et al. mentioned that for a (100) crystal orientation Si wafer, a solution of NaOH, IPA
and DI water creates square-based four-sided pyramids consisting of sections of [111]
planes which form internal angles of 54.7° with the (100) crystal orientation surface.®*

Figure 10: Wafer cross-section, with an average of roughly 8 um.

The data in Table 2 provides insights into the surface roughness and topography
of different Si wafers after various treatments, including as-cut, damage removal,
pyramid texturing and mc-Si samples. These metrics—area roughness and root
mean square (RMS) roughness—are critical in determining the suitability of wafers
for PV applications, where surface morphology impacts both electrical performance
and light absorption efliciency. The as-cut ¢-Si wafer exhibits an area roughness of
60.28 nm and RMS roughness of 77.41 nm, reflecting surface damage and mechanical
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irregularities introduced by sawing. This initial roughness is relatively high, hindering
efficient processing and performance and necessitating damage removal to improve
surface quality.

After damage removal, the c-Si wafer exhibits a significant reduction in roughness,
with area roughness decreasing to 37.56 nm and RMS roughness to 32.74 nm. This
smoother surface indicates the effective elimination of surface defects and residual stress,
preparing the wafer for further processing steps such as texturisation. Meanwhile, the
pyramid-textured c-Si wafer has an area roughness of 99.08 nm and RMS roughness
of 77.97 nm. The increase in roughness compared to the damage-removed wafer is
intentional, as the textured surface enhances light trapping and absorption, which are
essential for improving solar cell efficiency.

In contrast, the mc-Si wafer presents the highest roughness values, with an area
roughness of 179.34 nm and RMS roughness of 272.13 nm. This elevated roughness
is attributed to the presence of grain boundaries and multiple crystal orientations,
which introduce surface irregularities. Although higher roughness can promote
light scattering, it may also increase recombination losses, potentially affecting the
electrical performance of solar cells. The surface treatments reflect a trade-off between
smoothness and roughness, depending on the intended purpose. While smoother
surfaces enhance electrical properties, textured surfaces like pyramid structures are
necessary to optimise light absorption. Despite its roughness, the me-Si wafer can still
be beneficial in applications where light scattering is advantageous. According to these
research, by minimising surface stains and impurities, enhancing surface texturing and
passivation and optimising electrical and optical characteristics, cleaning and damage
removal of silicon wafers can improve the overall performance of solar cells.?*4:65-70
Thus, proper wafer surface treatment plays a vital role in boosting solar cell efhciency.
By eliminating contaminants and surface defects, it enables better light absorption
and carrier collection. These enhancements highlight the crucial impact of surface
preparation on the overall functionality and performance of photovoltaic devices.

Table 2: Damage removal (DR), textured pyramidal structure, polycrystalline wafer
topography, area roughness and RMS of as-cut.

Sample Area roughness (nm) RMS

As-cut ¢-Si 60.28 77.41
c-Si (Damage removal) 37.56 32.74
¢-Si (Pyramid textured) 99.08 77.97

mc-Si 179.34 272.13
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3. CONCLUSION

The cleaning and damage removal processes on c-Si and mc-Si are vital in preparing
these substrates for further fabrication. Furthermore, SEM and EDX analyses confirm
that the presence of surface contaminants, such as C, O, N and Fe, can negatively
impact electrical properties and performance. At the same time, the nitric/HF etching
process effectively eliminates these contaminants, yielding smoother surfaces with
improved Si content. In addition, wet-chemical etching with alkaline solutions
produces textured surfaces on mc-Si wafers, enhancing light trapping and minimising
reflectance. Accordingly, these processes reduce surface defects, improve electrical
properties and ensure that the wafers meet the quality requirements for high-efficiency
solar cells and reliable semiconductor devices. In conclusion, meticulous cleaning,
damage removal and surface texturisation are crucial to achieving superior wafer
performance, ultimately contributing to advancements in PV and semiconductor
technologies.
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